Configure and Use BIOS/UEFI Tools

Date: Nov 19, 2016

Return to the article

In this sample chapter from CompTIA A+ 220-901 and 220-902 Cert Guide, 4th Edition, author Mark Edward Soper covers; Introduction to BIOS/UEFI, explaining the motherboard’s firmware, known as the BIOS or UEFI. BIOS/UEFI Configuration which demonstrates how to access the BIOS and modify settings; for example, RAM, processor, and video settings. Flash Upgrade BIOS/UEFI where you’ll learn how to upgrade the BIOS through a process known as flashing and Using BIOS/UEFI Diagnostics where you’ll learn about diagnostic features built into many BIOS/UEFI chips.

This chapter covers the following subjects:

The Basic Input/Output System (BIOS) is an essential component of the motherboard. This boot firmware, also known as System BIOS or, on most recent systems, unified extensible firmware interface (UEFI), is the first code run by a computer when it is booted. It prepares the machine by testing it during bootup and paves the way for the operating system to start. It tests and initializes components such as the processor, RAM, video card, hard drives, optical, and USB drives. If any errors occur, the BIOS/UEFI reports them as part of the testing stage, known as the power-on self-test (POST). The BIOS/UEFI resides on a ROM chip and stores a setup program that you can access when the computer first boots up. From this program, a user can change settings in the BIOS and upgrade the BIOS as well. In this chapter, you find out about how the BIOS/UEFI, CMOS, and batteries on the motherboard interact and learn how to configure and upgrade the BIOS.

From this point on, the term BIOS refers to both traditional BIOS and UEFI firmware except when they differ in function.

220-901: Objective 1.1 Given a scenario, configure settings and use BIOS/UEFI tools on a PC.

Foundation Topics

BIOS/UEFI Configuration

The system BIOS has default settings provided by the system or motherboard maker, but as a system is built up with storage devices, memory modules, adapter cards, and other components, it is usually necessary to alter the standard settings.

To perform this task, the system assembler must use the BIOS setup program to make changes and save them to the CMOS (complementary metal oxide semiconductor) chip. Originally, the BIOS setup program was run from a bootable floppy disk, but for many years virtually all system BIOS chips have included the setup program.

Accessing the BIOS Setup Program

The BIOS configuration program is stored in the BIOS chip itself. Just press the key or key combination displayed onscreen (or described in the manual) to get started.

Although these keystrokes vary from system to system, the most popular keys on current systems include the escape (Esc) key, the Delete (Del) key, the F1 key, the F2 key, or the F10 key.

Most recent systems display the key(s) necessary to start the BIOS setup program at startup, as shown in Figure 2-1. However, if you don’t know which key to press to start your computer’s BIOS setup program, check the system or motherboard manual for the correct key(s).

Figure 2-1 A typical splash screen displays the keystrokes needed to start the BIOS setup program.

Be sure to consult the manual that came with your computer or motherboard before toying with the settings you find here. Fiddling with the settings can improve performance, but it can also wreak havoc on an otherwise healthy device if you don’t know what you’re doing. Be warned!

UEFI and Traditional BIOS

Most recent desktop and laptop computers (and all desktop and laptop computers from 2014 on) now use a new type of firmware called the Unified Extensible Firmware Initiative (UEFI) to display a mouse-driven GUI or text-based menu for BIOS setup. OS X computers all use UEFI firmware. Compared to a traditional Flash ROM BIOS, UEFI has the following advantages:

UEFI firmware offers similar settings to those used by a traditional BIOS (see Figure 2-2) along with additional options (refer to Figures 2-3 and beyond). Most desktop systems with UEFI firmware use a mouse-driven graphical interface. However, many laptops with UEFI firmware use a text-based interface similar to BIOS.

Figure 2-2 This computer uses a traditional BIOS.

To learn more about UEFI, visit http://www.uefi.org/.

BIOS Settings Overview

The following sections review the typical setup process using various UEFI firmware versions on systems running Intel Core i3 3227U, Intel Core i5 i6600, AMD FX-8350, and AMD A10-5800K processors.

Table 2-1 provides a detailed discussion of the most important CMOS/BIOS settings. Use this table as a quick reference to the settings you need to make or verify in any system. Examples of these and other settings are provided in the following sections.

Table 2-1 Major CMOS/BIOS/UEFI Settings

Option

Settings

Notes

Boot Sequence

Hard drive, optical (CD/DVD, Blu-ray), USB, network ROM; order as wanted

To boot from bootable OS or diagnostic CDs or DVDs, place the CD or DVD (optical) drive before the hard drive in the boot sequence. To boot from a bootable USB device, place the USB device before the hard drive in the boot sequence. You can enable or disable additional boot devices on some systems.

Memory Configuration

By SPD or Auto (default); manual settings (Frequency, CAS Latency [CL], Fast R-2-R turnaround, and so on) also available

Provides stable operation using the settings stored in memory by the vendor.

Use manual settings (frequency, CAS latency, and so on) for overclocking (running memory at faster than normal speeds) or to enable memory of different speeds to be used safely by selecting slower settings.

CPU Clock and Frequency

Automatically detected on most recent systems

Faster or higher settings overclock the system but could cause instability (see Chapter 8, “Ports and Interfaces,” for details). Some systems default to low values when the system doesn’t start properly.

Hardware Monitor

Enable display for all fans plugged in to the motherboard

Also known as PC Health on some systems; can be monitored from within the OS with vendor-supplied or third-party utilities.

Onboard Audio, Modem, or Network

Enable or disable

Enable when you don’t use add-on cards for any of these functions; disable each setting before installing a replacement card. Some systems include two network adapters.

USB Legacy

Enable when USB keyboard is used

Enables USB keyboard to work outside the OS.

Serial Ports

Disable unused ports; use default settings for port you use

Also known as COM ports. Most systems no longer have serial ports.

Parallel Port

Disable unused port; use EPP/ECP mode with default IRQ/DMA when parallel port or device is connected

Compatible with almost any parallel printer or device; be sure to use an IEEE-1284-compatible printer cable. Most recent systems no longer include parallel (LPT) ports.

USB Function

Enable

When motherboard supports USB 2.0 (Hi-Speed USB) ports, be sure to enable USB 2.0 function and load USB 2.0 drivers in the OS.

USB 3.0 Function

Enable

USB 3.0 ports also support USB 3.1, 2.0, and USB 1.1 devices. Disable when USB 3.0 drivers are not available for operating system.

Keyboard

NumLock, auto-repeat rate/delay

Leave at defaults (NumLock On) unless keyboard has problems.

Plug-and-Play OS

Enable for all except some Linux distributions, Windows NT, MS-DOS

When enabled, Windows configures devices.

Primary VGA BIOS

Varies

Select the primary graphics card type (PCIe or onboard).

Shadowing

Varies

Enable shadowing for video BIOS; leave other shadowing disabled.

Quiet Boot

Varies

Disable to display system configuration information at startup.

Boot-Time Diagnostic Screen

Varies

Enable to display system configuration information at startup.

Virtualization

Varies

Enable to run hardware-based virtualization programs such as Hyper-V or Parallels so that you can run multiple operating systems, each in its own window.

Power Management (Menu)

Enable unless you have problems with devices

Enable CPU fan settings to receive warnings of CPU fan failure.

S1 or S3 standby

Enable S3

Use S1 (which saves minimal power) only when you use devices that do not properly wake up from S3 standby.

AC Pwr Loss Restart

Enable restart or Full on

Prevents the system from staying down when a power failure takes place.

Wake on LAN (WOL)

Enable when you use WOL-compatible network card or modem

WOL-compatible cards use a small cable between the card and the motherboard. Some integrated network ports also support WOL.

User/Power-On Password

Blocks system from starting when password is not known

Enable when physical security settings are needed, but be sure to record the password in a secure place.

Setup Password

Blocks access to setup when password is not known

Both passwords can be cleared on both systems when CMOS RAM is cleared.

Write-Protect Boot Sector

Varies

Enable for normal use, but disable when installing drives or using a multiboot system. Helps prevent accidental formatting but might not stop third-party disk prep software from working.

Boot Virus Detection (Antivirus Boot Sector)

Enable

Stops true infections but allows multiboot configuration.

SATA Drives

Varies

Auto-detects drive type and settings at startup time. Select CD/DVD for CD/DVD/Blu-ray drive; select None when drive is not present or to disable an installed drive.

SATA Drive configuration

IDE, AHCI, RAID

IDE setting emulates now-obsolete PATA drives. To take advantage of hot-swapping and Native Command Queuing (NCQ) to improve performance, select AHCI. Use RAID when the drive will be used as part of a RAID array.

Automatic Configuration of BIOS/CMOS Settings

As you can see from Table 2-1, there are many options to select when configuring BIOS settings. Many BIOS firmware versions enable you to automatically configure your system with a choice of these options from the main menu:

These options primarily deal with performance configuration settings in the BIOS firmware, such as memory timings, memory cache, and the like. The settings used by each BIOS setup option are customized by the motherboard or system manufacturer.

Use BIOS defaults to troubleshoot the system because these settings are conservative in memory timings and other options. Normally, the setup defaults provide better performance. As you view the setup screens in this chapter, you’ll note these options are listed.

With many recent systems, you can select Optimal or Setup defaults, save your changes, and then exit; the system will then work acceptably. However, to configure drive settings, USB settings, or to enable or disable ports, you also need to work with individual BIOS settings, such as the ones shown in the following sections.

Main Menu

When you start the BIOS configuration program for your system, you might see a GUI menu similar to the UEFI CMOS Setup Utility menus shown in Figures 2-3 and 2-4. Many laptops and corporate-oriented desktop computers with UEFI BIOS use a text-based menu such as the one shown in Figure 2-5 (later in this chapter).

Figure 2-3 A typical UEFI main setup menu for a desktop system with an Intel processor (UEFI BIOS for Gigabyte Z170XP-SLI).

Figure 2-4 A typical UEFI main setup menu for a desktop system with an AMD processor (UEFI BIOS for BIOSTAR Hi-Fi A85W).

Figure 2-5 Information dialog on a typical laptop with text-based UEFI firmware.

From this menu, you can go to any menu, select default settings, save changes, or exit setup without saving any changes.

Main/Standard Features/Settings

The Main/Standard Features/Settings menus (refer to Figures 2-3 and 2-4) frequently report system features (such as the motherboard model and onboard RAM) and sometimes also configure the system’s date and time. To access other settings, use arrow keys or your mouse to highlight the appropriate icon or text menu.

Discovering System Information

Most systems display system information such as processor type, clock speed, cache memory size, installed memory (RAM), and BIOS information from within the BIOS (see Figure 2-5). Use this information to help determine whether a system needs a processor, memory, or BIOS update.

Boot Settings and Boot Sequence

Most computers include settings that control how the system boots and the sequence in which drives are checked for bootable operating system files. Depending on the system, these settings might be part of a larger menu, such as an Advanced Settings menu, a BIOS Features menu (see Figure 2-6), or a separate Boot menu (see Figure 2-7).

Figure 2-6 Boot sequence and other boot settings in the BIOS Features menu.

Figure 2-7 A typical Boot menu configured to permit booting from a CD/DVD or USB flash drive before the hard drive.

Enabling Fast Boot skips memory and drive tests to enable faster startup. Enabling Boot Up NumLock turns on the keyboard’s NumLock option.

The menus shown in Figures 2-6 and 2-7 are used to adjust the order in which drives are checked for bootable media. For faster booting, set the hard drive with system files as the first boot device. However, when you want to have the option to boot from an optical (CD/DVD/Blu-ray) disk or from a USB flash or hard drive for diagnostics or operating system installations, put those drives before SATA hard drives in the boot order.

Integrated Ports and Peripherals

Typical desktop systems are loaded with onboard ports and features, and the menus shown in Figures 2-8, 2-9, 2-10, and 2-11 are typical of the BIOS menus used to enable, disable, and configure storage, audio, network, and USB ports.

Figure 2-8 A UEFI configuration dialog for SATA ports.

Figure 2-9 Configuring a USB host adapter for battery charging.

Figure 2-10 Configuring onboard HD Audio.

Figure 2-11 Configuring the onboard network adapter.

SATA Configuration

Use the SATA configuration options (such as those shown in Figure 2-8) to enable or disable SATA and eSATA ports and to configure SATA host adapters to run in compatible (emulating PATA), native (AHCI), or RAID modes. AHCI supports Native Command Queuing (NCQ) for faster performance and permits hot-swapping of eSATA drives.

To learn more about RAID configuration, see “RAID Types” in Chapter 6, “Storage Devices.”

USB Host Adapters and Charging Support

Most systems have separate settings for the USB (2.0) and USB 3.0 (a.k.a. SuperSpeed) controllers (on systems that have USB 3.0 ports). If you don’t enable USB 2.0 or USB 3.0 in your system BIOS, all your system’s USB ports will run at the next lower speed.

Some USB configuration utilities can also be used to enable a specified USB port to output at a higher amperage than normal to enable faster charging of smartphones. Figure 2-9 illustrates a system with USB 3.0 support enabled and battery charting support being enabled.

Audio and Ethernet Ports

Depending upon the system, these and other integrated ports might be configured using a common menu or on separate menus. In Figure 2-10, the HD “Azalia” onboard audio is enabled; if a separate sound card was installed, onboard audio should be disabled. SPDIF audio can be directed through the SPDIF digital audio port (default) or the HDMI AV port (optional) using this menu.

In Figure 2-11, the onboard LAN option ROM is disabled on this system. Enable it when you want to boot from an operating system that is stored on a network drive.

Power Management

Although operating systems include power management features, the BIOS controls how any given system responds to standby or power-out conditions. Figure 2-12 illustrates a typical power management menu.

Figure 2-12 Typical power management configuration menu.

ACPI is the power management function used in modern systems, replacing the older APM standard; it should be enabled. Most systems offer two ACPI standby states: S1/POS (power on standby) and S3/STR (suspend to RAM). Use S3/STR whenever possible because it uses much less power when the system is idle.

You can also configure your system power button, specify how to restart your system when AC power is lost, and specify how to wake up a system from standby, sleep, or hibernation modes. Some systems display these settings in the same dialog as power management, whereas others use a separate dialog or submenu.

Monitoring

As hot as a small room containing a PC can get, it’s a whole lot hotter inside the PC itself. Excessive heat is the enemy of system stability and shortens the life of your hardware. Adding fans can help, but when they fail, you have problems. See Chapter 7, “CPUs,” for more information.

The Hardware Monitor BIOS dialog (sometimes referred to as PC Health) is a common feature in most recent desktop systems. It is used to display the following (refer to Figure 2-13):

Figure 2-13 Typical PC Health hardware monitoring menu.

Many systems can also be configured to warn when CPU or system temperatures reach a dangerously high level or when fans stop turning or spin at too low a speed for proper cooling.

Windows-based hardware monitoring programs can also be used to display this information during normal system operation.

Processor and Memory Configuration

To monitor system clock and bus speed settings, check the processor and memory configuration dialog typically available on gaming-oriented systems or others designed for overclocking (see Figure 2-14). On these systems, you can disable the normal Auto settings and manually tweak speeds, voltages, and other timing settings.

Figure 2-14 CPU configuration dialog used for viewing and changing clock and bus speeds for overclocking.

Virtualization Support

Virtualization is the capability to run multiple operating systems on a single computer at the same time. Although virtualization does not require processor support, virtualization programs such as Windows Virtual PC and Hyper-V, Oracle VM VirtualBox, and versions of VMware Workstation provide much better performance on systems that have hardware-assisted virtualization support enabled.

For a system to support hardware-assisted virtualization, it must include a CPU that supports virtualization and virtualization must be enabled in the system BIOS.

Intel-based systems with VT support might have two entries for virtualization. Intel Virtualization Technology (also known as VT or VT-x) must be enabled for hardware-assisted virtualization to be supported. Intel VT with Directed I/O (VT-d Tech) can also be enabled to help improve I/O performance, although processors that support VT-x vary in their levels of VT-d support. Some systems, such as the one shown in Figure 2-15, have a single entry that enables or disables virtualization. When VT-d is enabled, VT-x is also enabled.

Figure 2-15 Virtualization is not enabled on this Intel-based system.

AMD-based systems that support hardware-assisted virtualization feature a single BIOS setting that might be labeled Virtualization, Secure Virtual Machine Mode, or SVM (see Figure 2-16).

Figure 2-16 Virtualization has been enabled on this AMD-based system.

Security Features

Security features of various types are scattered around the typical system BIOS/UEFI dialogs. Features and their locations vary by system and might include:

Enable the BIOS password feature to permit access to BIOS setup dialogs only for those with the password. The power-on password option prevents anyone without the password from starting the system. Note that these options can be defeated by opening the system and clearing the CMOS memory.

Intrusion detection/notification, also known as Chassis Intrusion, when enabled, displays a warning on startup that the system has been opened.

Boot sector protection, found primarily on older systems, protects the default system drive’s boot sector from being changed by viruses or other unwanted programs. Depending on the implementation, this option might need to be disabled before an operating system installation or upgrade.

Secure Boot is a feature that permits only software trusted by the PC manufacturer to be used to boot the system. When Secure Boot is enabled, the UEFI firmware checks for signatures on the boot software, option ROMs, and the operating system. Secure Boot support was first introduced in Windows 8, Windows RT, Windows Server 2012, and is also supported in newer versions.

A TPM (trusted program module) is used by Windows editions that support BitLocker full-disk encryption feature to protect the contents of the system hard drive (Vista) or any specified drive (Windows 7/8/8.1/10). Although many corporate laptops include a built-in TPM module, desktop computers and servers might include a connection for an optional TPM. For more information about using BitLocker, see Chapter 21, “Security.”

LoJack for Laptops (and other mobile devices) is a popular security feature embedded in the laptop BIOSes of a number of systems and can be added to other systems. It consists of two components: a BIOS-resident component and the Computrace Agent, which is activated by LoJack when a computer is reported as stolen. To learn more about LoJack for laptops, tablets, and smartphones see www.absolute.com/en/lojackforlaptops/home.aspx.

Exiting BIOS and Saving/Discarding Changes

When you exit the BIOS setup program, you can elect to save configuration changes or discard them. Many systems with UEFI firmware permit the user to save multiple BIOS configuration settings (see Figure 2-17).

Figure 2-17 Preparing to save the current BIOS configuration to a file.

If you made changes you want to keep, choose the option to save changes (see Figure 2-18). If you were “just looking” and did not intend to make any changes, choose the option to discard changes (see Figure 2-19). When you exit the BIOS setup program with either option, the system restarts.

Figure 2-18 Preparing to save changes and exit the BIOS configuration menu.

Figure 2-19 Preparing to discard changes and exit the BIOS configuration menu.

Flash Upgrade BIOS

The BIOS chip can be regarded as the “glue” that binds the hardware to the operating system. If the BIOS doesn’t recognize the operating system or the hardware it communicates with, you’re sure to have problems.

Because the BIOS chip bridges hardware to the operating system, you need to update the BIOS whenever your current BIOS version is unable to properly support

BIOS updates can also be used to solve problems with power management or other hardware-related issues.

A computer that is more than one year old or that is a candidate for a new processor might need a BIOS update. In the 1980s into the early 1990s, a BIOS update required a physical chip swap and, sometimes, reprogramming the chip with a device called an Electrically Erasable Programmable Read-Only Memory (EEPROM) burner. If the replacement or reprogrammed BIOS chip was installed incorrectly into the socket, it could be destroyed.

Fortunately, since the mid-1990s, a BIOS update can now be performed with software. The Flash BIOS chips in use on practically every recent system contain a special type of memory that can be changed through a software download from the system or motherboard maker.

Although Flash BIOS updates are easier to perform than the older, replace-the-chip style, you still need to be careful. An incomplete or incorrect BIOS update will prevent your system from being accessed. No BIOS, no boot! Regardless of the method, for maximum safety, follow these initial steps:

Flash BIOS Update

So you’ve decided you need a Flash BIOS update. Where do you get it? Don’t ask the BIOS manufacturers (Phoenix, Insyde, AMI, and Award/Phoenix). They don’t sell BIOS updates because their basic products are modified by motherboard and system vendors. Following are the general steps to locate a Flash BIOS update and install it:

Using BIOS/UEFI Diagnostics

Some system vendors provide UEFI diagnostics programs that can be installed on a bootable USB drive or might be available to run at system startup time. These diagnostic programs can be used to test the motherboard, RAM, displays, drives, fans, and other components. Figure 2-20 illustrates the main menu of the HP Hardware Diagnostics utility.

Figure 2-20 Preparing to test a computer with HP PC Hardware Diagnostics UEFI.

Exam Preparation Tasks

Review All the Key Topics

Review the most important topics in the chapter, noted with the Key Topic icon in the outer margin of the page. Table 2-2 lists a reference to these key topics and the page numbers on which each is found.

Table 2-2 Key Topics for Chapter 2

Key Topic Element

Description

Page Number

Text

Common keystrokes used to access BIOS Setup

32

Text

Definition of UEFI firmware

33

Table 2-1

Major CMOS/BIOS/UEFI Settings

35

Figure 2-3

A typical CMOS UEFI Setup main menu

38

Figure 2-4

A typical UEFI main setup menu for a desktop system with an AMD processor (UEFI BIOS for BIOSTAR Hi-Fi A85W).

39

Figure 2-7

A typical Boot Sequence submenu configured to permit booting from a CD/DVD or USB flash drive before the hard disk

41

Figure 2-12

Typical power management configuration menu

46

Figure 2-13

A typical hardware monitor screen

47

Figure 2-17

Typical exit dialog with the option to save changes to a file

52

Text

Flash BIOS update

56

Complete the Tables and Lists from Memory

Print a copy of Appendix B, “Memory Tables” (found on the CD), or at least the section for this chapter, and complete the tables and lists from memory. Appendix C, “Answers to Memory Tables,” also on the CD, includes completed tables and lists to check your work.

Define Key Terms

Define the following key terms from this chapter, and check your answers in the glossary.

Complete Hands-On Labs

Complete the hands-on labs, and then see the answers and explanations at the end of the chapter.

Lab 2-1: Disable Onboard Audio

Scenario: You are a technician working at a PC repair bench. You need to install a sound card into a system that has onboard audio. Before you can do this, you need to turn off the onboard audio feature in the system BIOS.

Lab 2-2: Check Fan and Voltage Levels

Scenario: You are a technician working at a PC repair bench. Your client reports that the computer is overheating. You need to check the performance of fans connected to the motherboard and the voltage levels on the motherboard.

Answer Review Questions

Answer these review questions and then see the answers and explanations at the end of the chapter.

  1. Which of the following best describes the BIOS?

    1. Firmware contained on a ROM chip

    2. The first code run when the computer starts up

    3. Volatile and requires a battery to maintain its memory

    4. Program contained in the Master Boot Record (MBR)

  2. When the user wants to change the default settings in the BIOS startup program, where are those changes saved and stored?

    1. UEFI

    2. POST

    3. MBR

    4. CMOS

  3. Which of the following statements is false?

    1. UEFI does not support traditional Master Boot Record (MBR) hard drive partitioning.

    2. UEFI is capable of working with the GUID Partition Table (GPT).

    3. UEFI enables more efficient use of larger hard drives than traditional BIOS.

    4. Apple OS X uses UEFI.

  4. If there were a problem during startup with your computer’s memory, where would that problem be reported?

    1. CMOS

    2. POST

    3. MBR

    4. TPM

  5. Which of the following steps should be taken before installing a new sound card?

    1. You should disable the onboard audio controller in POST.

    2. You should use POST to configure the new sound card.

    3. You should disable the onboard audio controller in the BIOS settings.

    4. You should configure the new sound card in the MBR.

  6. Which of the following statements best describes the function of the Secure Boot setting in UEFI firmware?

    1. It prevents Windows 8 or Windows 10 from booting.

    2. It allows Linux to be used as an operating system.

    3. It enables AHCI mode.

    4. It enables only Windows 8 or Windows 10 to be used as an operating system.

  7. In which of the following configuration programs might you navigate the menu screens using a mouse?

    1. UEFI

    2. CMOS

    3. BIOS

    4. POST

  8. In the following figure, which of the following actions makes and saves changes to the CMOS chip?

    1. Pressing Del

    2. Pressing Tab

    3. Pressing F9

    4. Pressing F12

  9. Which of the following information is not found in the BIOS/UEFI startup settings?

    1. Time and date

    2. Installed memory

    3. CPU temperature

    4. CPU type and speed

    5. IP address

  10. Which of the following statements best describes the effect of enabling Quick Boot in the startup program?

    1. It omits POST.

    2. It does not run the memory and drive tests.

    3. It does not check CMOS settings.

    4. It activates the S3 power saving program.

  11. What is the power management system used for in modern computers?

    1. APM

    2. SATA

    3. ATAPI

    4. ACPI

  12. A friend has just bought a new computer and has given you his old computer. The old computer has a 30 GB IDE hard drive that you want to upgrade to a new 3 TB SATA hard drive, but when you install your new hard drive, you find that you can access only about 2 TB of space. Which of the following statements best describes how to remedy the situation?

    1. You should install new drivers for the new SATA drive.

    2. You should enable the new drive in the CMOS settings.

    3. You should upgrade your current motherboard along with the new hard drive.

    4. You should return the hard disk drive and use a 2 TB hard disk drive instead.

  13. In Table 2-3, identify which of the following are stored on ROM chips and which are stored on RAM chips. Also indicate which require(s) an outside source of power to maintain its memory.

    Table 2-3 ROM/RAM/POWER

    Options

    BIOS

    UEFI

    CMOS

    ROM or RAM?

     

     

     

    Requires Battery or No Power Source?

     

     

     

  14. Match the following security features with their definitions.

    Features

    Definitions

    A. TPM

    1. Warns when chassis has been opened

    B. Secure Boot

    2. Limits access to startup screens to users with proper authorization

    C. BIOS password

    3. Supports BitLocker encryption

    D. Power-on password

    4. Requires user to provide identification when turning system on

    E. Intrusion detection

    5. Checks signature of boot software and permits only trusted software to start the system

     

    6. Allows computer’s location to be traced if stolen

     

    7. Warns when a virus tries to attack the system

  15. Which of the following best describes to permanently change or upgrade the BIOS program?

    1. Download a new program from the system manufacturer and flash the BIOS.

    2. Make any necessary changes to the CMOS program and save those changes to the BIOS.

    3. Make any necessary changes to the POST program as it is testing and initializing the various components.

    4. After the MBR has been run, save any changes to the BIOS.

Answers and Explanations to Hands-On Labs

Lab 2-1: Disable Onboard Audio

To access the onboard audio screen from Figure 2-3, the most likely menu to go to is the Peripherals menu. However, on other systems, the correct answer might be Advanced or other options.

Figure 2-10 is the figure including the HD Audio setting.

The menu is the Advanced menu.

The option is called HD Audio Azalia Device.

The current setting is Enabled.

The setting to select is Disabled.

The key to save changes and exit varies by BIOS/UEFI firmware. In Figure 2-17, the key is F10 (the most common choice). However, a different BIOS/UEFI firmware dialog shown in Figure 2-16 uses F4.

Lab 2-2: Check Fan and Voltage Levels

The PC Health Status menu is the most likely place to find this information. Figure 2-13 illustrates a typical dialog.

The CPU fan speed is 1394 RPM (rpm). The CPU voltage is listed as two values: CPU Vcore and CPU VCCSA. CPU Vcore is 1.224V, and the CPU VCCSA is 1.068V.

To exit without saving changes, use the Esc key.

Answers and Explanations to Review Questions

  1. A. During startup, the BIOS program (or the more recent UEFI) is the first program to run and is responsible for starting the computer. The BIOS is stored on a ROM chip and is not volatile. The BIOS is not part of the MBR.

  2. D. When changes are made to the startup program in either the BIOS or the newer UEFI, those changes are stored on the CMOS chip.

  3. A. UEFI does support traditional Master Boot Record (MBR) hard drive partitioning and is also capable of working with the GUID Partition Table (GPT) and modern large hard drives. UEFI is also used by OS X.

  4. B. During startup, the BIOS program runs POST, which tests and initializes components such as memory, CPU, hard drives, optical drives, USB drives, and video cards and then reports any problems found.

  5. C. Restart the computer and open the startup settings. Disable the onboard audio before installing the new sound card and save the changes to CMOS.

  6. D. Secure Boot must be disabled when the user wants to install a different operating system.

  7. A. The UEFI display uses a mouse-driven GUI in addition to the keyboard navigation used by the BIOS.

  8. A. CMOS is a RAM chip that is used to store changes made to the startup program within the BIOS or UEFI. To edit the startup program, you should check the user’s manual or restart the computer and watch the screen for instructions to enter the BIOS setup. In the diagram, pressing Del allows you to enter the startup program. Any changes made here may be saved in CMOS.

  9. E. The IP address is found in the Network and Sharing Center or through the command-line interface, not in the BIOS or UEFI.

  10. B. Quick Boot enables faster system startup by skipping the memory and drive tests when booting the computer. POST and CMOS are always involved in the boot process. The S3 power setting does not affect the boot process.

  11. D. ACPI replaced APM as the power management utility on modern computers. SATA is a type of hard drive. ATAPI is the standard for CDs and DVDs.

  12. C. An older traditional BIOS can support only a maximum hard drive size of 2.2 TB. To use the new 3 TB hard drive, you need to replace the motherboard with a newer one that supports UEFI (which supports up to 9.4 ZB hard drives).

  13.  

    ROM/RAM/POWER Answers

    Options

    BIOS

    UEFI

    CMOS

    ROM or RAM?

    ROM

    ROM

    RAM

    Requires Battery or No Power Source?

    No power source

    No power source

    Requires battery

    BIOS and UEFI are both stored on ROM chips and therefore are permanent and do not require an additional power source. CMOS is stored in RAM, which is volatile and requires a CMOS battery to provide a constant trickle of power to maintain its memory.

  14. A. 3; B. 5; C. 2; D. 4; E.1. Incorrect definitions: 6, 7.

  15. A. The BIOS program (or the newer UEFI program) is stored as permanent memory in ROM. To permanently change the programming for either of these chips, you must download a new program from the manufacturer and flash that program onto the BIOS or UEFI. Changes made to the CMOS chip, which is RAM, are temporary and will be lost if power is lost in the CMOS battery. POST and the MBR do not affect the contents of either the BIOS or the UEFI.

800 East 96th Street, Indianapolis, Indiana 46240

vceplus-200-125    | boson-200-125    | training-cissp    | actualtests-cissp    | techexams-cissp    | gratisexams-300-075    | pearsonitcertification-210-260    | examsboost-210-260    | examsforall-210-260    | dumps4free-210-260    | reddit-210-260    | cisexams-352-001    | itexamfox-352-001    | passguaranteed-352-001    | passeasily-352-001    | freeccnastudyguide-200-120    | gocertify-200-120    | passcerty-200-120    | certifyguide-70-980    | dumpscollection-70-980    | examcollection-70-534    | cbtnuggets-210-065    | examfiles-400-051    | passitdump-400-051    | pearsonitcertification-70-462    | anderseide-70-347    | thomas-70-533    | research-1V0-605    | topix-102-400    | certdepot-EX200    | pearsonit-640-916    | itproguru-70-533    | reddit-100-105    | channel9-70-346    | anderseide-70-346    | theiia-IIA-CIA-PART3    | certificationHP-hp0-s41    | pearsonitcertification-640-916    | anderMicrosoft-70-534    | cathMicrosoft-70-462    | examcollection-cca-500    | techexams-gcih    | mslearn-70-346    | measureup-70-486    | pass4sure-hp0-s41    | iiba-640-916    | itsecurity-sscp    | cbtnuggets-300-320    | blogged-70-486    | pass4sure-IIA-CIA-PART1    | cbtnuggets-100-101    | developerhandbook-70-486    | lpicisco-101    | mylearn-1V0-605    | tomsitpro-cism    | gnosis-101    | channel9Mic-70-534    | ipass-IIA-CIA-PART1    | forcerts-70-417    | tests-sy0-401    | ipasstheciaexam-IIA-CIA-PART3    | mostcisco-300-135    | buildazure-70-533    | cloudera-cca-500    | pdf4cert-2v0-621    | f5cisco-101    | gocertify-1z0-062    | quora-640-916    | micrcosoft-70-480    | brain2pass-70-417    | examcompass-sy0-401    | global-EX200    | iassc-ICGB    | vceplus-300-115    | quizlet-810-403    | cbtnuggets-70-697    | educationOracle-1Z0-434    | channel9-70-534    | officialcerts-400-051    | examsboost-IIA-CIA-PART1    | networktut-300-135    | teststarter-300-206    | pluralsight-70-486    | coding-70-486    | freeccna-100-101    | digitaltut-300-101    | iiba-CBAP    | virtuallymikebrown-640-916    | isaca-cism    | whizlabs-pmp    | techexams-70-980    | ciscopress-300-115    | techtarget-cism    | pearsonitcertification-300-070    | testking-2v0-621    | isacaNew-cism    | simplilearn-pmi-rmp    | simplilearn-pmp    | educationOracle-1z0-809    | education-1z0-809    | teachertube-1Z0-434    | villanovau-CBAP    | quora-300-206    | certifyguide-300-208    | cbtnuggets-100-105    | flydumps-70-417    | gratisexams-1V0-605    | ituonline-1z0-062    | techexams-cas-002    | simplilearn-70-534    | pluralsight-70-697    | theiia-IIA-CIA-PART1    | itexamtips-400-051    | pearsonitcertification-EX200    | pluralsight-70-480    | learn-hp0-s42    | giac-gpen    | mindhub-102-400    | coursesmsu-CBAP    | examsforall-2v0-621    | developerhandbook-70-487    | root-EX200    | coderanch-1z0-809    | getfreedumps-1z0-062    | comptia-cas-002    | quora-1z0-809    | boson-300-135    | killtest-2v0-621    | learncia-IIA-CIA-PART3    | computer-gcih    | universitycloudera-cca-500    | itexamrun-70-410    | certificationHPv2-hp0-s41    | certskills-100-105    | skipitnow-70-417    | gocertify-sy0-401    | prep4sure-70-417    | simplilearn-cisa    |
http://www.pmsas.pr.gov.br/wp-content/    | http://www.pmsas.pr.gov.br/wp-content/    |