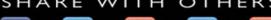


Official Cert Guide

Learn, prepare, and practice for exam success


CCNA Routing and Switching ICND2 200-105

Academic Edition

ciscopress.com

WENDELL ODOM, CCIE® No. 1624

FREE SAMPLE CHAPTER

CCNA Routing and Switching ICND2 200-105

Official Cert Guide Academic Edition

WENDELL ODOM, CCIE No. 1624 with contributing author **SCOTT HOGG,** CCIE No. 5133

Cisco Press

800 East 96th Street Indianapolis, IN 46240

CCNA Routing and Switching ICND2 200-105 Official Cert Guide Academic Edition

Wendell Odom with contributing author Scott Hogg

Copyright@ 2017 Pearson Education, Inc.

Published by: Cisco Press 800 East 96th Street Indianapolis, IN 46240 USA

All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without written permission from the publisher, except for the inclusion of brief quotations in a review.

Printed in the United States of America

First Printing August 2016

Library of Congress Control Number: 2016936746

ISBN-13: 978-1-58720-598-9 ISBN-10: 1-58720-598-X

Warning and Disclaimer

This book is designed to provide information about the Cisco ICND2 200-105 exam for CCNA Routing and Switching certification. Every effort has been made to make this book as complete and as accurate as possible, but no warranty or fitness is implied.

The information is provided on an "as is" basis. The authors, Cisco Press, and Cisco Systems, Inc. shall have neither liability nor responsibility to any person or entity with respect to any loss or damages arising from the information contained in this book or from the use of the discs or programs that may accompany it.

The opinions expressed in this book belong to the author and are not necessarily those of Cisco Systems, Inc.

Trademark Acknowledgments

All terms mentioned in this book that are known to be trademarks or service marks have been appropriately capitalized. Cisco Press or Cisco Systems, Inc., cannot attest to the accuracy of this information. Use of a term in this book should not be regarded as affecting the validity of any trademark or service mark.

Special Sales

For information about buying this title in bulk quantities, or for special sales opportunities (which may include electronic versions; custom cover designs; and content particular to your business, training goals, marketing focus, or branding interests), please contact our corporate sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Feedback Information

At Cisco Press, our goal is to create in-depth technical books of the highest quality and value. Each book is crafted with care and precision, undergoing rigorous development that involves the unique expertise of members from the professional technical community.

Readers' feedback is a natural continuation of this process. If you have any comments regarding how we could improve the quality of this book, or otherwise alter it to better suit your needs, you can contact us through email at feedback@ciscopress.com. Please make sure to include the book title and ISBN in your message.

We greatly appreciate your assistance.

Editor-in-Chief: Mark Taub

Product Line Manager: Brett Bartow

Business Operation Manager, Cisco Press: Jan Cornelssen

Managing Editor: Sandra Schroeder Development Editor: Drew Cupp

Senior Project Editor: Tonya Simpson

Copy Editor: Bill McManus

Technical Editor(s): Aubrey Adams, Elan Beer

Editorial Assistant: Vanessa Evans Cover Designer: Chuti Prasertsith Composition: Bronkella Publishing Indexer: Publishing Works, Inc.

Proofreader: Paula Lowell

Americas Headquarters Cisco Systems, Inc. San Jose, CA Asia Pacific Headquarters Cisco Systems (USA) Pte. Ltd Singapore Europe Headquarters Cisco Systems International BV Amsterdam, The Netherlands

Cisco has more than 200 offices worldwide. Addresses, phone numbers, and fax numbers are listed on the Cisco Website at www.cisco.com/go/offices.

CCDE, CCENT. Cisco Eos, Cisco Health/Presence, the Cisco logo, Cisco Lumin, Cisco Nexus, Cisco Stadium/vision, Cisco TelePresence, Cisco WebEx, DCE, and Welcome to the Human Network are trademarks; Changing the Way We Work, Live, Play, and Learn and Cisco Store are service marks; and Access Registrant, Aironet, AsyncOS. Bringing the Meeting To You, Catalyst, CDDA, CCDP, CCIE, CCIP, CCNA, CCNP, CCSP, CCVP, Cisco, the Cisco Certified Internetwork Expert Logo, Cisco Olive, Scisco Systems, Cisco Systems Capital, the Cisco Systems (apolg, Cisco Olive), Collaboration Wilmout Limitation, EitherFast, EtherFast, Ether

About the Author

Wendell Odom, CCIE No. 1624 (Emeritus), has been in the networking industry since 1981. He has worked as a network engineer, consultant, systems engineer, instructor, and course developer; he currently works writing and creating certification study tools. This book is his 27th edition of some product for Pearson, and he is the author of all editions of the CCNA Routing and Switching and CCENT Cert Guides from Cisco Press. He has written books about topics from networking basics, and certification guides throughout the years for CCENT, CCNA R&S, CCNA DC, CCNP ROUTE, CCNP QoS, and CCIE R&S. He helped develop the popular Pearson Network Simulator. He maintains study tools, links to his blogs, and other resources at http://www.certskills.com.

About the Contributing Author

Scott Hogg, CCIE No. 5133, CISSP No. 4610, is the CTO for Global Technology Resources, Inc. (GTRI). Scott authored the Cisco Press book *IPv6 Security*. Scott is a Cisco Champion, founding member of the Rocky Mountain IPv6 Task Force (RMv6TF), and a member of the Infoblox IPv6 Center of Excellence (COE). Scott is a frequent presenter and writer on topics including IPv6, SDN, Cloud, and Security.

About the Technical Reviewers

Aubrey Adams is a Cisco Networking Academy instructor in Perth, Western Australia. With a background in telecommunications design, Aubrey has qualifications in electronic engineering and management; graduate diplomas in computing and education; and associated industry certifications. He has taught across a broad range of both related vocational and education training areas and university courses. Since 2007, Aubrey has technically reviewed a number of Pearson Education and Cisco Press publications, including video, simulation, and online products.

Elan Beer, CCIE No. 1837, is a senior consultant and Cisco instructor specializing in data center architecture and multiprotocol network design. For the past 27 years, Elan has designed networks and trained thousands of industry experts in data center architecture, routing, and switching. Elan has been instrumental in large-scale professional service efforts designing and troubleshooting internetworks, performing data center and network audits, and assisting clients with their short- and long-term design objectives. Elan has a global perspective of network architectures via his international clientele. Elan has used his expertise to design and troubleshoot data centers and internetworks in Malaysia, North America, Europe, Australia, Africa, China, and the Middle East. Most recently, Elan has been focused on data center design, configuration, and troubleshooting as well as service provider technologies. In 1993, Elan was among the first to obtain the Cisco Certified System Instructor (CCSI) certification, and in 1996, he was among the first to attain Cisco System's highest technical certification, the Cisco Certified Internetworking Expert. Since then, Elan has been involved in numerous large-scale data center and telecommunications networking projects worldwide.

vi CCNA Routing and Switching ICND2 200-105 Official Cert Guide, Academic Edition

Dedications

For Kris Odom, my wonderful wife: The best part of everything we do together in life. Love you, doll.

Acknowledgments

Brett Bartow again served as associate publisher and executive editor on the book. We've worked together on probably 20+ titles now. Besides the usual wisdom and good decision making to guide the project, he was the driving force behind adding all the new apps to the DVD/web. As always, Brett has been a pleasure to work with, and an important part of deciding what the entire Official Cert Guide series direction should be.

As part of writing these books, we work in concert with Cisco. A special thanks goes out to various people on the Cisco team who work with Pearson to create Cisco Press books. In particular, Greg Cote, Joe Stralo, and Phil Vancil were a great help while we worked on these titles.

Drew Cupp did his usual wonderful job with this book as development editor. He took over the job for this book during a pretty high-stress and high-load timeframe, and delivered with excellence. Thanks Drew for jumping in and getting into the minutia while keeping the big-picture features on track. And thanks for the work on the online/DVD elements as well!

Aubrey Adams and Elan Beer both did a great job as technical editors for this book, just as they did for the ICND1 100-105 Cert Guide. This book presented a little more of a challenge, from the breadth of some of the new topics, just keeping focus with such a long pair of books in a short time frame. Many thanks to Aubrey and Elan, for the timely input, for taking the time to read and think about every new part of the book, for finding those small technical areas, and for telling me where I need to do more. Truly, it's a much better book because of the two of you.

Hank Preston of Cisco Systems, IT as a Service Architect, and co-author of the Cisco Press CCNA Cloud CLDADM 210-455 Cert Guide, gave me some valuable assistance when researching before writing the cloud computing chapter (27). Hank helped me refine my understanding based on his great experience with helping Cisco customers implement cloud computing. Hank did not write the chapter, but his insights definitely made the chapter much better and more realistic.

Welcome and thanks to Lisa Matthews for her work on the DVD and online tools, like the Key Topics reviews. That work included many new math-related apps in the ICND1 book, but also many new features that sit on the DVD and on this book's website as review tools. Thanks for the hard work, Lisa!

I love the magic wand that is production. Presto, Word docs with gobs of queries and comments feed into the machine, and out pops these beautiful books. Thanks to Sandra Schroeder, Tonya Simpson, and all the production team for making the magic happen. From fixing all my grammar, crummy word choices, and passive-voice sentences to pulling the design and layout together, they do it all; thanks for putting it all together and making it look easy. And Tonya, once again getting the "opportunity" to manage two books with many elements at the same timeline. Once again, the juggling act continues, and once again, it is done well and beautifully. Thanks for managing the whole production process again.

The figures in the book continue to be an important part of the book, by design, with a great deal of attention paid to choosing how to use figures to communicate ideas. Mike Tanamachi, illustrator and mind reader, did his usual great job creating the finished figure files once again. Thanks for the usual fine work, Mike!

I could not have made the timeline for this book without Chris Burns of Certskills Professional. Chris owns the mind map process now, owns big parts of the lab development process for the associated labs added to my blogs, does various tasks related to specific chapters, and then catches anything I need to toss over my shoulder so I can focus on the books. Chris, you are the man!

Sean Wilkins played the largest role he's played so far with one of my books. A long-time co-collaborator with Pearson's CCNA Simulator, Sean did a lot of technology work behind the scenes. No way the books are out on time without Sean's efforts; thanks for the great job, Sean!

A special thanks to you readers who submit suggestions and point out possible errors, and especially to those of you who post online at the Cisco Learning Network. Without question, past comments I have received directly and "overheard" by participating at CLN have made this edition a better book.

Thanks to my wonderful wife, Kris, who helps make this sometimes challenging work lifestyle a breeze. I love walking this journey with you, doll. Thanks to my daughter Hannah. And thanks to Jesus Christ, Lord of everything in my life.

Contents at a Glance

Introduction xxxiii

Your Study Plan 2

Part I Ethernet LANs 11

Chapter 1 Implementing Ethernet Virtual LANs 12

Chapter 2 Spanning Tree Protocol Concepts 38

Chapter 3 Spanning Tree Protocol Implementation 64

Chapter 4 LAN Troubleshooting 92

Chapter 5 VLAN Trunking Protocol 114

Chapter 6 Miscellaneous LAN Topics 136

Part I Review 156

Part II IPv4 Routing Protocols 161

Chapter 7 Understanding OSPF Concepts 162

Chapter 8 Implementing OSPF for IPv4 184

Chapter 9 Understanding EIGRP Concepts 214

Chapter 10 Implementing EIGRP for IPv4 234

Chapter 11 Troubleshooting IPv4 Routing Protocols 260

Chapter 12 Implementing External BGP 286

Part II Review 310

Part III Wide-Area Networks 313

Chapter 13 Implementing Point-to-Point WANs 314

Chapter 14 Private WANs with Ethernet and MPLS 346

Chapter 15 Private WANs with Internet VPN 368

Part III Review 412

Part IV IPv4 Services: ACLs and QoS 415

Chapter 16 Basic IPv4 Access Control Lists 416

Chapter 17 Advanced IPv4 Access Control Lists 436

Chapter 18 Quality of Service (QoS) 464

Part IV Review 490

Part V IPv4 Routing and Troubleshooting 493

Chapter 19 IPv4 Routing in the LAN 494

Chapter 20 Implementing HSRP for First-Hop Routing 516

Chapter 21 Troubleshooting IPv4 Routing

Part V Review 556

Part VI IPv6 561

Chapter 22 IPv6 Routing Operation and Troubleshooting 562

Chapter 23 Implementing OSPF for IPv6 584

Implementing EIGRP for IPv6 612 Chapter 24

Chapter 25 IPv6 Access Control Lists 632

Part VI Review 656

Part VII Miscellaneous 659

Chapter 26 Network Management 660

Chapter 27 Cloud Computing 696

Chapter 28 SDN and Network Programmability 724

Part VII Review 744

Part VIII Final Prep 747

Chapter 29 Final Review 748

Part IX **Appendixes 763**

Appendix A Numeric Reference Tables 764

Appendix B CCNA ICND2 200-105 Exam Updates 770

Glossary 780

Index 816

DVD Appendixes

Appendix C Answers to the Review Questions

Appendix D Practice for Chapter 16: Basic IPv4 Access Control Lists

Appendix E Mind Map Solutions

Appendix F Study Planner

Appendix G Learning IPv4 Routes with RIPv2

Appendix H **Understanding Frame Relay Concepts**

Appendix I Implementing Frame Relay

Appendix J IPv4 Troubleshooting Tools

Appendix K **Topics from Previous Editions**

Appendix L Exam Topic Cross Reference

Contents

Introduction xxxiii

Your Study Plan 2

A Brief Perspective on Cisco Certification Exams 2

Five Study Plan Steps

Step 1: Think in Terms of Parts and Chapters 3

Step 2: Build Your Study Habits Around the Chapter 4

Step 3: Use Book Parts for Major Milestones 4

Step 4: Use the Final Review Chapter to Refine Skills and Uncover Weaknesses 5

Step 5: Set Goals and Track Your Progress 6

Things to Do Before Starting the First Chapter 7

Find Review Activities on the Web and DVD 7

Should I Plan to Use the Two-Exam Path or One-Exam Path? 7

Study Options for Those Taking the 200-125 CCNA Exam 8

Other Small Tasks Before Getting Started 9

Getting Started: Now 9

Part I Ethernet LANs 11

Chapter 1 Implementing Ethernet Virtual LANs 12

Foundation Topics 13

Virtual LAN Concepts 13

Creating Multiswitch VLANs Using Trunking 14

VLAN Tagging Concepts 15

The 802.1Q and ISL VLAN Trunking Protocols 16

Forwarding Data Between VLANs 16

Routing Packets Between VLANs with a Router 17

Routing Packets with a Layer 3 Switch 19

VLAN and VLAN Trunking Configuration and Verification 19

Creating VLANs and Assigning Access VLANs to an Interface 20

VLAN Configuration Example 1: Full VLAN Configuration 20

VLAN Configuration Example 2: Shorter VLAN Configuration 23

VLAN Trunking Protocol 24

VLAN Trunking Configuration 24

Implementing Interfaces Connected to Phones 28

Data and Voice VLAN Concepts 29

Data and Voice VLAN Configuration and Verification 30

Summary: IP Telephony Ports on Switches 32

Chapter Summary 33

Review Questions 33

Chapter Review 34

Chapter 2 Spanning Tree Protocol Concepts 38

Foundation Topics 39

Spanning Tree Protocol (IEEE 802.1D) 39

The Need for Spanning Tree 39

What IEEE 802.1D Spanning Tree Does 41

How Spanning Tree Works 42

The STP Bridge ID and Hello BPDU 43

Electing the Root Switch 44

Choosing Each Switch's Root Port 45

Choosing the Designated Port on Each LAN Segment 47

Influencing and Changing the STP Topology 48

Making Configuration Changes to Influence the STP Topology 48

Reacting to State Changes That Affect the STP Topology 49

How Switches React to Changes with STP 49

Changing Interface States with STP 50

Rapid STP (IEEE 802.1w) Concepts 51

Comparing STP and RSTP 52

RSTP and the Alternate (Root) Port Role 53

RSTP States and Processes 54

RSTP and the Backup (Designated) Port Role 55

RSTP Port Types 56

Optional STP Features 56

EtherChannel 57

PortFast 57

BPDU Guard 58

Chapter Summary 59

Review Questions 60

Chapter Review 61

Chapter 3 Spanning Tree Protocol Implementation 64

Foundation Topics 65

Implementing STP 65

Setting the STP Mode 65

Connecting STP Concepts to STP Configuration Options 66

Per-VLAN Configuration Settings 66

The Bridge ID and System ID Extension 67

Per-VLAN Port Costs 68

STP Configuration Option Summary 68

Verifying STP Operation 68

Configuring STP Port Costs 71

Configuring Priority to Influence the Root Election 72

Implementing Optional STP Features 74

Configuring PortFast and BPDU Guard 74

```
Configuring EtherChannel 76
     Configuring a Manual EtherChannel
     Configuring Dynamic EtherChannels 79
Implementing RSTP 80
  Identifying the STP Mode on a Catalyst Switch 80
  RSTP Port Roles
  RSTP Port States 84
  RSTP Port Types 84
Chapter Summary 86
Review Questions 86
Chapter Review 88
LAN Troubleshooting
Foundation Topics 93
Troubleshooting STP 93
  Determining the Root Switch 93
  Determining the Root Port on Nonroot Switches
     STP Tiebreakers When Choosing the Root Port 95
     Suggestions for Attacking Root Port Problems on the Exam 96
  Determining the Designated Port on Each LAN Segment 96
     Suggestions for Attacking Designated Port Problems on the Exam 97
  STP Convergence 98
Troubleshooting Layer 2 EtherChannel 98
  Incorrect Options on the channel-group Command 98
  Configuration Checks Before Adding Interfaces to EtherChannels 100
Analyzing the Switch Data Plane Forwarding 101
  Predicting STP Impact on MAC Tables 102
  Predicting EtherChannel Impact on MAC Tables
  Choosing the VLAN of Incoming Frames 104
Troubleshooting VLANs and VLAN Trunks 105
  Access VLAN Configuration Incorrect 105
  Access VLANs Undefined or Disabled 106
  Mismatched Trunking Operational States 107
  Mismatched Supported VLAN List on Trunks
                                             108
  Mismatched Native VLAN on a Trunk 110
Chapter Summary 111
Chapter Review 111
VLAN Trunking Protocol 114
Foundation Topics 115
VLAN Trunking Protocol (VTP) Concepts 115
  Basic VTP Operation 115
     Synchronizing the VTP Database 116
     Requirements for VTP to Work Between Two Switches 118
```

Chapter 4

Chapter 5

VTP Version 1 Versus Version 2 119

VTP Pruning 119

Summary of VTP Features 120

VTP Configuration and Verification 121

Using VTP: Configuring Servers and Clients 121

Verifying Switches Synchronized Databases 123

Storing the VTP and Related Configuration 125

Avoiding Using VTP 126

VTP Troubleshooting 127

Determining Why VTP Is Not Synchronizing 127

Common Rejections When Configuring VTP 128

Problems When Adding Switches to a Network 128

Chapter Summary 131

Review Questions 131

Chapter Review 132

Chapter 6 Miscellaneous LAN Topics 136

Foundation Topics 137

Securing Access with IEEE 802.1x 137

AAA Authentication 139

AAA Login Process 139

TACACS+ and RADIUS Protocols 139

AAA Configuration Examples 140

DHCP Snooping 142

DHCP Snooping Basics 142

An Example DHCP-based Attack 143

How DHCP Snooping Works 144

Summarizing DHCP Snooping Features 145

Switch Stacking and Chassis Aggregation 146

Traditional Access Switching Without Stacking 146

Switch Stacking of Access Layer Switches 146

Switch Stack Operation as a Single Logical Switch 148

Cisco FlexStack and FlexStack-Plus 149

Chassis Aggregation 149

High Availability with a Distribution/Core Switch 149

Improving Design and Availability with Chassis Aggregation 150

Chapter Summary 152

Review Questions 152

Chapter Review 153

Part I Review 156

Part II IPv4 Routing Protocols 161

Chapter 7 Understanding OSPF Concepts 162

Foundation Topics 163

Comparing Dynamic Routing Protocol Features 163

Routing Protocol Functions 163

Interior and Exterior Routing Protocols 164

Comparing IGPs 165

IGP Routing Protocol Algorithms 165

Metrics 166

Other IGP Comparisons 167

Administrative Distance 167

OSPF Concepts and Operation 168

OSPF Overview 169

Topology Information and LSAs 169

Applying Dijkstra SPF Math to Find the Best Routes 170

Becoming OSPF Neighbors 170

The Basics of OSPF Neighbors 170

Meeting Neighbors and Learning Their Router ID 171

Exchanging the LSDB Between Neighbors 172

Fully Exchanging LSAs with Neighbors 173

Maintaining Neighbors and the LSDB 174

Using Designated Routers on Ethernet Links 174

Calculating the Best Routes with SPF 176

OSPF Area Design 177

OSPF Areas 178

How Areas Reduce SPF Calculation Time 179

OSPF Area Design Advantages 180

Chapter Summary 181

Review Questions 182

Chapter Review 183

Chapter 8 Implementing OSPF for IPv4 184

Foundation Topics 185

Implementing Single-Area OSPFv2 185

OSPF Single-Area Configuration 186

Matching with the OSPF network Command 187

Verifying OSPFv2 Single Area 188

Configuring the OSPF Router ID 191

OSPF Passive Interfaces 192

Implementing Multiarea OSPFv2 194

Single-Area Configurations 195

Multiarea Configuration 196

Chapter 9

Verifying the Multiarea Configuration 197 Verifying the Correct Areas on Each Interface on an ABR 198 Verifying Which Router Is DR and BDR 198 Verifying Interarea OSPF Routes 199 Additional OSPF Features 200 OSPF Default Routes 200 OSPF Metrics (Cost) 202 Setting the Cost Based on Interface Bandwidth 202 The Need for a Higher Reference Bandwidth 204 OSPF Load Balancing 204 OSPFv2 Interface Configuration 205 OSPFv2 Interface Configuration Example 205 Verifying OSPFv2 Interface Configuration 206 Chapter Summary 208 Review Questions 208 Chapter Review 210 **Understanding EIGRP Concepts 214** Foundation Topics 215 EIGRP and Distance Vector Routing Protocols 215 Introduction to EIGRP 215 Basic Distance Vector Routing Protocol Features 216 The Concept of a Distance and a Vector 216 Full Update Messages and Split Horizon 217 Route Poisoning 219 EIGRP as an Advanced DV Protocol 220 EIGRP Sends Partial Update Messages, As Needed 220 EIGRP Maintains Neighbor Status Using Hello 221 Summary of Interior Routing Protocol Features 221 EIGRP Concepts and Operation 222 EIGRP Neighbors 222 Exchanging EIGRP Topology Information 223 Calculating the Best Routes for the Routing Table 224 The EIGRP Metric Calculation 224 An Example of Calculated EIGRP Metrics 225 Caveats with Bandwidth on Serial Links 226 EIGRP Convergence 227 Feasible Distance and Reported Distance 227 EIGRP Successors and Feasible Successors 228 The Query and Reply Process 229 Chapter Summary 231

Review Questions 231 Chapter Review 233

Chapter 10 Implementing EIGRP for IPv4 234

Foundation Topics 235

Core EIGRP Configuration and Verification 235

EIGRP Configuration 235

Configuring EIGRP Using a Wildcard Mask 236

Verifying EIGRP Core Features 237

Finding the Interfaces on Which EIGRP Is Enabled 238

Displaying EIGRP Neighbor Status 240

Displaying the IPv4 Routing Table 241

EIGRP Metrics, Successors, and Feasible Successors 242

Viewing the EIGRP Topology Table 243

Finding Successor Routes 244

Finding Feasible Successor Routes 245

Convergence Using the Feasible Successor Route 247

Examining the Metric Components 248

Other EIGRP Configuration Settings 249

Load Balancing Across Multiple EIGRP Routes 249

Tuning the EIGRP Metric Calculation 251

Autosummarization and Discontiguous Classful Networks 252

Automatic Summarization at the Boundary of a Classful Network 252

Discontiguous Classful Networks 253

Chapter Summary 255

Review Questions 255

Chapter Review 257

Chapter 11 Troubleshooting IPv4 Routing Protocols 260

Foundation Topics 261

Perspectives on Troubleshooting Routing Protocol Problems 261

Interfaces Enabled with a Routing Protocol 262

EIGRP Interface Troubleshooting 263

Examining Working EIGRP Interfaces 264

Examining the Problems with EIGRP Interfaces 266

OSPF Interface Troubleshooting 268

Neighbor Relationships 270

EIGRP Neighbor Verification Checks 272

EIGRP Neighbor Troubleshooting Example 273

OSPF Neighbor Troubleshooting 274

Finding Area Mismatches 276

Finding Duplicate OSPF Router IDs 277

Finding OSPF Hello and Dead Timer Mismatches 279

Other OSPF Issues 280

Shutting Down the OSPF Process 280

Mismatched MTU Settings 281

Chapter Summary 283 Chapter Review 283

Chapter 12 Implementing External BGP 286

Foundation Topics 287

BGP Concepts 287

Advertising Routes with BGP 287

Internal and External BGP 288

Choosing the Best Routes with BGP 289

eBGP and the Internet Edge 290

Internet Edge Designs and Terminology 290

Advertising the Enterprise Public Prefix into the Internet 291

Learning Default Routes from the ISP 292

eBGP Configuration and Verification 293

BGP Configuration Concepts 294

Configuring eBGP Neighbors Using Link Addresses 294

Verifying eBGP Neighbors 296

Administratively Disabling Neighbors 297

Injecting BGP Table Entries with the network Command 298

Injecting Routes for a Classful Network 298

Advertising Subnets to the ISP 300

Advertising a Single Prefix with a Static Discard Route 301

Learning a Default Route from the ISP 303

Chapter Summary 305

Review Questions 305

Chapter Review 306

Part II Review 310

Part III Wide-Area Networks 313

Chapter 13 Implementing Point-to-Point WANs 314

Foundation Topics 315

Leased-Line WANs with HDLC 315

Layer 1 Leased Lines 315

The Physical Components of a Leased Line 316

The Role of the CSU/DSU 318

Building a WAN Link in a Lab 319

Layer 2 Leased Lines with HDLC 319

Configuring HDLC 320

Leased-Line WANs with PPP 323

PPP Concepts 323

PPP Framing 324

PPP Control Protocols 324

PPP Authentication 325

Implementing PPP 326 Implementing PPP CHAP 327 Implementing PPP PAP 328 Implementing Multilink PPP 330 Multilink PPP Concepts 331 Configuring MLPPP 332 Verifying MLPPP 333 Troubleshooting Serial Links 335 Troubleshooting Layer 1 Problems Troubleshooting Layer 2 Problems Keepalive Failure 336 PAP and CHAP Authentication Failure 337 Troubleshooting Layer 3 Problems 338 Chapter Summary 340 Review Questions 340 Chapter Review 342 Chapter 14 Private WANs with Ethernet and MPLS 346 Foundation Topics 347 Metro Ethernet 347 Metro Ethernet Physical Design and Topology 347 Ethernet WAN Services and Topologies 349 Ethernet Line Service (Point-to-Point) 349 Ethernet LAN Service (Full Mesh) 350 Ethernet Tree Service (Hub and Spoke) 351 Layer 3 Design Using Metro Ethernet 351 Layer 3 Design with E-Line Service 352 Layer 3 Design with E-LAN Service Layer 3 Design with E-Tree Service 353 Ethernet Virtual Circuit Bandwidth Profiles 354 Charging for the Data (Bandwidth) Used 355 Controlling Overages with Policing and Shaping 355 Multiprotocol Label Switching (MPLS) 356 MPLS VPN Physical Design and Topology 358 MPLS and Quality of Service 359 Layer 3 with MPLS VPN 360 OSPF Area Design with MPLS VPN 361 Routing Protocol Challenges with EIGRP 362 Chapter Summary 364 Review Questions 364

Chapter Review 365

Chapter 15 Private WANs with Internet VPN 368

Foundation Topics 369

Internet Access and Internet VPN Fundamentals 369

Internet Access 369

Digital Subscriber Line 370

Cable Internet 371

Wireless WAN (3G, 4G, LTE) 371

Fiber Internet Access 372

Internet VPN Fundamentals 373

Site-to-Site VPNs with IPsec 374

Client VPNs with SSL 375

GRE Tunnels and DMVPN 376

GRE Tunnel Concepts 376

Routing over GRE Tunnels 376

GRE Tunnels over the Unsecured Network 378

Configuring GRE Tunnels 380

Verifying a GRE Tunnel 382

Troubleshooting GRE Tunnels 384

Tunnel Interfaces and Interface State 384

Layer 3 Issues for Tunnel Interfaces 386

Issues with ACLs and Security 387

Multipoint Internet VPNs Using DMVPN 388

PPP over Ethernet 390

PPPoE Concepts 391

PPPoE Configuration 392

PPPoE Configuration Breakdown: Dialers and Layer 1 393

PPPoE Configuration Breakdown: PPP and Layer 2 393

PPPoE Configuration Breakdown: Layer 3 394

PPPoE Configuration Summary 394

A Brief Aside About Lab Experimentation with PPPoE 395

PPPoE Verification 396

Verifying Dialer and Virtual-Access Interface Bindings 397

Verifying Virtual-Access Interface Configuration 398

Verifying PPPoE Session Status 399

Verifying Dialer Interface Layer 3 Status 400

PPPoE Troubleshooting 401

Step 0: Status Before Beginning the First Step 401

Step 1: Status After Layer 1 Configuration 402

Step 2: Status After Layer 2 (PPP) Configuration 403

Step 3: Status After Layer 3 (IP) Configuration 404

PPPoE Troubleshooting Summary 405

Chapter Summary 406 Review Questions 407 Chapter Review 408

Part III Review 412

Part IV IPv4 Services: ACLs and QoS 415

Chapter 16 Basic IPv4 Access Control Lists 416

Foundation Topics 417

IPv4 Access Control List Basics 417

ACL Location and Direction 417

Matching Packets 418

Taking Action When a Match Occurs 418

Types of IP ACLs 419

Standard Numbered IPv4 ACLs 419

List Logic with IP ACLs 419

Matching Logic and Command Syntax 421

Matching the Exact IP Address 421

Matching a Subset of the Address with Wildcards 421

Binary Wildcard Masks 423

Finding the Right Wildcard Mask to Match a Subnet 423

Matching Any/All Addresses 423

Implementing Standard IP ACLs 424

Standard Numbered ACL Example 1 424

Standard Numbered ACL Example 2 426

Troubleshooting and Verification Tips 427

Practice Applying Standard IP ACLs 428

Practice Building access-list Commands 428

Reverse Engineering from ACL to Address Range 429

Chapter Summary 431

Review Questions 431

Chapter Review 432

Chapter 17 Advanced IPv4 Access Control Lists 436

Foundation Topics 437

Extended Numbered IP Access Control Lists 437

Matching the Protocol, Source IP, and Destination IP 437

Matching TCP and UDP Port Numbers 438

Extended IP ACL Configuration 441

Extended IP Access Lists: Example 1 441

Extended IP Access Lists: Example 2 443

Practice Building access-list Commands 444

Named ACLs and ACL Editing 444

Named IP Access Lists 444

Editing ACLs Using Sequence Numbers 446

Numbered ACL Configuration Versus Named ACL Configuration 448

ACL Implementation Considerations 449

Troubleshooting with IPv4 ACLs 450

Analyzing ACL Behavior in a Network 450

ACL Troubleshooting Commands 451

Example Issue: Reversed Source/Destination IP Addresses 452

Steps 3D and 3E: Common Syntax Mistakes 453

Example Issue: Inbound ACL Filters Routing Protocol Packets 454

ACL Interactions with Router-Generated Packets 455

Local ACLs and a Ping from a Router 455

Router Self-Ping of a Serial Interface IPv4 Address 456

Router Self-Ping of an Ethernet Interface IPv4 Address 456

Chapter Summary 458

Review Questions 458

Chapter Review 460

Chapter 18 Quality of Service (QoS) 464

Foundation Topics 465

Introduction to QoS 465

QoS: Managing Bandwidth, Delay, Jitter, and Loss 465

Types of Traffic 466

Data Applications 466

Voice and Video Applications 467

QoS as Mentioned in This Book 468

QoS on Switches and Routers 469

Classification and Marking 469

Classification Basics 469

Matching (Classification) Basics 470

Classification on Routers with ACLs and NBAR 471

Marking IP DSCP and Ethernet CoS 472

Marking the IP Header 472

Marking the Ethernet 802.1Q Header 473

Other Marking Fields 474

Defining Trust Boundaries 474

DiffServ Suggested Marking Values 475

Expedited Forwarding (EF) 475

Assured Forwarding (AF) 475

Class Selector (CS) 476

Congestion Management (Queuing) 476 Round Robin Scheduling (Prioritization) 477 Low Latency Queuing 478 A Prioritization Strategy for Data, Voice, and Video 479 Shaping and Policing 480 Policing 480 Where to Use Policing 481 Shaping 482 Setting a Good Shaping Time Interval for Voice and Video 483 Congestion Avoidance 484 TCP Windowing Basics 484 Congestion Avoidance Tools 485 Chapter Summary 486 Review Questions Chapter Review 487 Part IV Review 490 IPv4 Routing and Troubleshooting 493 Chapter 19 IPv4 Routing in the LAN 494 Foundation Topics 495 VLAN Routing with Router 802.1Q Trunks 495 Configuring ROAS 496 Verifying ROAS 498 Troubleshooting ROAS 500 VLAN Routing with Layer 3 Switch SVIs 501 Configuring Routing Using Switch SVIs 501 Verifying Routing with SVIs 502 Troubleshooting Routing with SVIs 503 VLAN Routing with Layer 3 Switch Routed Ports 505 Implementing Routed Interfaces on Switches 506 Implementing Layer 3 EtherChannels 508 Troubleshooting Layer 3 EtherChannels 511 Chapter Summary 512 Review Questions 512 Chapter Review 514 Chapter 20 Implementing HSRP for First-Hop Routing 516 Foundation Topics 517 FHRP and HSRP Concepts 517 The Need for Redundancy in Networks 517 The Need for a First Hop Redundancy Protocol 519 The Three Solutions for First-Hop Redundancy

Part V

HSRP Concepts 521 HSRP Failover 521

HSRP Load Balancing 522

Implementing HSRP 523

Configuring and Verifying Basic HSRP 523

HSRP Active Role with Priority and Preemption 526

HSRP Versions 528

Troubleshooting HSRP

Checking HSRP Configuration 529

Symptoms of HSRP Misconfiguration 530

Chapter Summary 532

Review Questions 533

Chapter Review 534

Chapter 21 Troubleshooting IPv4 Routing

Foundation Topics 537

Problems Between the Host and the Default Router 537

Root Causes Based on a Host's IPv4 Settings 537

Ensure IPv4 Settings Correctly Match 537

Mismatched Masks Impact Route to Reach Subnet 538

Typical Root Causes of DNS Problems 540

Wrong Default Router IP Address Setting 541

Root Causes Based on the Default Router's Configuration 541

DHCP Issues 542

Router LAN Interface and LAN Issues 543

Problems with Routing Packets Between Routers 545

IP Forwarding by Matching the Most Specific Route 545

Using show ip route and Subnet Math to Find the Best Route 546

Using show ip route *address* to Find the Best Route 547

show ip route Reference 548

Routing Problems Caused by Incorrect Addressing Plans 549

Recognizing When VLSM Is Used or Not 549

Overlaps When Not Using VLSM 549

Overlaps When Using VLSM 550

Configuring Overlapping VLSM Subnets 551

Pointers to Related Troubleshooting Topics

Router WAN Interface Status 552

Filtering Packets with Access Lists 553

Chapter Summary 554

Chapter Review 554

Part VI IPv6 561

Chapter 22 IPv6 Routing Operation and Troubleshooting 562

Foundation Topics 563

Normal IPv6 Operation 563

Unicast IPv6 Addresses and IPv6 Subnetting 563

Assigning Addresses to Hosts 565

Stateful DHCPv6 565

Stateless Address Autoconfiguration 566

Router Address and Static Route Configuration 567

Configuring IPv6 Routing and Addresses on Routers 567

IPv6 Static Routes on Routers 568

Verifying IPv6 Connectivity 569

Verifying Connectivity from IPv6 Hosts 569

Verifying IPv6 from Routers 571

Troubleshooting IPv6 572

Pings from the Host Work Only in Some Cases 573

Pings Fail from a Host to Its Default Router 574

Problems Using Any Function That Requires DNS 575

Host Is Missing IPv6 Settings: Stateful DHCP Issues 576

Host Is Missing IPv6 Settings: SLAAC Issues 577

Traceroute Shows Some Hops, But Fails 579

Routing Looks Good, But Traceroute Still Fails 580

Chapter Summary 581

Chapter Review 582

Chapter 23 Implementing OSPF for IPv6 584

Foundation Topics 585

OSPFv3 for IPv6 Concepts 585

IPv6 Routing Protocol Versions and Protocols 585

Two Options for Implementing Dual Stack with OSPF 585

OSPFv2 and OSPFv3 Internals 586

OSPFv3 Configuration 587

Basic OSPFv3 Configuration 587

Single-Area Configuration on the Three Internal Routers 589

Adding Multiarea Configuration on the Area Border Router 590

Other OSPFv3 Configuration Settings 591

Setting OSPFv3 Interface Cost to Influence Route Selection 591

OSPF Load Balancing 592

Injecting Default Routes 593

OSPFv3 Verification and Troubleshooting 593

OSPFv3 Interfaces 595

Verifying OSPFv3 Interfaces 595

Troubleshooting OSPFv3 Interfaces 596

OSPFv3 Neighbors 597

Verifying OSPFv3 Neighbors 597

Troubleshooting OSPFv3 Neighbors

OSPFv3 LSDB and LSAs 600

The Issue of IPv6 MTU 601

OSPFv3 Metrics and IPv6 Routes 602

Verifying OSPFv3 Interface Cost and Metrics 602

Troubleshooting IPv6 Routes Added by OSPFv3 604

Chapter Summary 606

Review Questions 607

Chapter Review 608

Chapter 24 Implementing EIGRP for IPv6 612

Foundation Topics 613

EIGRP for IPv6 Configuration 613

EIGRP for IPv6 Configuration Basics 613

EIGRP for IPv6 Configuration Example 614

Other EIGRP for IPv6 Configuration Settings 616

Setting Bandwidth and Delay to Influence EIGRP for IPv6 Route Selection 616

EIGRP Load Balancing 617

EIGRP Timers 618

EIGRP for IPv6 Verification and Troubleshooting 619

EIGRP for IPv6 Interfaces 620

EIGRP for IPv6 Neighbors 621

EIGRP for IPv6 Topology Database 623

EIGRP for IPv6 Routes 624

Chapter Summary 627

Review Questions 627

Chapter Review 629

Chapter 25 IPv6 Access Control Lists 632

Foundation Topics 633

IPv6 Access Control List Basics 633

Similarities and Differences Between IPv4 and IPv6 ACLs 633

ACL Location and Direction 634

IPv6 Filtering Policies 634

ICMPv6 Filtering Caution 635

Capabilities of IPv6 ACLs 635

Limitations of IPv6 ACLs 636

Matching Tunneled Traffic 636

IPv4 Wildcard Mask and IPv6 Prefix Length 636

ACL Logging Impact 636

Router Originated Packets 637

```
Configuring Standard IPv6 ACLs 637
             Configuring Extended IPv6 ACLs 640
               Examples of Extended IPv6 ACLs 642
               Practice Building ipv6 access-list Commands 644
             Other IPv6 ACL Topics 644
               Implicit IPv6 ACL Rules 644
                  An Example of Filtering ICMPv6 NDP and the Negative Effects 645
                  How to Avoid Filtering ICMPv6 NDP Messages 648
                  IPv6 ACL Implicit Filtering Summary 649
               IPv6 Management Control ACLs 649
             Chapter Summary 651
             Review Questions 651
             Chapter Review 652
Part VI Review 656
             Miscellaneous 659
Chapter 26 Network Management
             Foundation Topics 661
             Simple Network Management Protocol 661
               SNMP Concepts 661
                  SNMP Variable Reading and Writing: SNMP Get and Set 661
                  SNMP Notifications: Traps and Informs 662
                  The Management Information Base 663
                  Securing SNMP
                                  664
               Implementing SNMP Version 2c 665
                  Configuring SNMPv2c Support for Get and Set 665
                  Configuring SNMPv2c Support for Trap and Inform 666
                  Verifying SNMPv2c Operation
               Implementing SNMP Version 3 669
                  SNMPv3 Groups 669
                  SNMPv3 Users, Passwords, and Encryption Keys 671
                  Verifying SNMPv3 673
                  Implementing SNMPv3 Notifications (Traps and Informs) 674
                  Summarizing SNMPv3 Configuration 675
             IP Service Level Agreement
               An Overview of IP SLA 677
               Basic IP SLA ICMP-Echo Configuration
               Troubleshooting Using IP SLA Counters 678
               Troubleshooting Using IP SLA History 680
```

Part VII

```
....
```

SPAN Concepts 681

The Need for SPAN When Using a Network Analyzer 682

SPAN Session Concepts 683

Configuring Local SPAN 684

SPAN Session Parameters for Troubleshooting 687

Choosing to Limit SPAN Sources 687

Chapter Summary 689

Review Questions 690

Chapter Review 691

Chapter 27 Cloud Computing 696

SPAN 681

Foundation Topics 697

Cloud Computing Concepts 697

Server Virtualization 697

Cisco Server Hardware 697

Server Virtualization Basics 698

Networking with Virtual Switches on a Virtualized Host 699

The Physical Data Center Network 700

Workflow with a Virtualized Data Center 701

Cloud Computing Services 702

Private Cloud 703

Public Cloud 704

Cloud and the "As a Service" Model 705

Infrastructure as a Service 705

Software as a Service 706

(Development) Platform as a Service 706

WAN Traffic Paths to Reach Cloud Services 707

Enterprise WAN Connections to Public Cloud 707

Accessing Public Cloud Services Using the Internet 707

Pros and Cons with Connecting to Public Cloud with Internet 708

Private WAN and Internet VPN Access to Public Cloud 709

Pros and Cons with Connecting to Cloud with Private WANs 710

Intercloud Exchanges 710

Summarizing the Pros and Cons of Public Cloud WAN Options 711

A Scenario: Branch Offices and the Public Cloud 711

Migrating Traffic Flows When Migrating to Email SaaS 712

Branch Offices with Internet and Private WAN 713

Virtual Network Functions and Services 714

Virtual Network Functions: Firewalls and Routers 714

DNS Services 716

Address Assignment Services and DHCP 717

NTP 718

Chapter Summary 720 Review Questions 720 Chapter Review 721 Chapter 28 SDN and Network Programmability 724 Foundation Topics 725 SDN and Network Programmability Basics 725 The Data, Control, and Management Planes 725 The Data Plane 725 The Control Plane 726 The Management Plane 727 Cisco Switch Data Plane Internals 727 Controllers and Network Architecture 728 Controllers and Centralized Control 728 The Southbound Interface 729 The Northbound Interface 730 SDN Architecture Summary 732 Examples of Network Programmability and SDN 732 Open SDN and OpenFlow 732 The OpenDaylight Controller 733 Cisco Open SDN Controller 734 The Cisco Application Centric Infrastructure 734 The Cisco APIC Enterprise Module 735 Comparing the Three Examples 737 Cisco APIC-EM Path Trace ACL Analysis Application 738 APIC-EM Path Trace App 738 APIC-EM Path Trace ACL Analysis Tool Timing and Exam Topic 738 Chapter Summary 740 Review Questions 741 Chapter Review 741 Part VII Review 744 Final Prep 747 Chapter 29 Final Review 748 Advice About the Exam Event 748 Learn the Question Types Using the Cisco Certification Exam Tutorial 748 Think About Your Time Budget Versus Number of Questions 749 A Suggested Time-Check Method 750 Miscellaneous Pre-Exam Suggestions 750 Exam-Day Advice 750

Reserve the Hour After the Exam in Case You Fail 751

Exam Review 752

Part VIII

Take Practice Exams 752

Practicing Taking the ICND2 or CCNA R&S Exam 753

Advice on How to Answer Exam Questions 753

Taking Other Practice Exams 755

Find Knowledge Gaps Through Question Review 755

Practice Hands-On CLI Skills 757

Review Mind Maps from Part Review 757

Do Labs 757

Assess Whether You Are Ready to Pass (and the Fallacy of Exam Scores) 759

Study Suggestions After Failing to Pass 759

Other Study Tasks 760

Final Thoughts 761

Part IX **Appendixes 763**

Appendix A Numeric Reference Tables 764

Appendix B CCNA ICND2 200-105 Exam Updates 770

Glossary 780

Index 816

DVD Appendixes

Appendix C Answers to the Review Questions

Appendix D Practice for Chapter 16: Basic IPv4 Access Control Lists

Appendix E Mind Map Solutions

Appendix F Study Planner

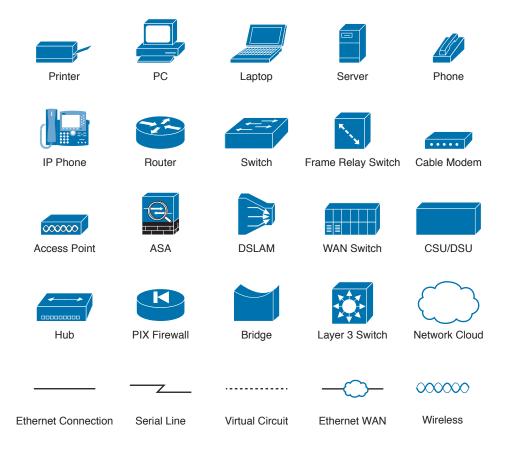
Appendix G Learning IPv4 Routes with RIPv2

Appendix H Understanding Frame Relay Concepts

Appendix I Implementing Frame Relay

Appendix J IPv4 Troubleshooting Tools

Appendix K Topics from Previous Editions


Appendix L Exam Topic Cross Reference

Reader Services

To access additional content for this book, simply register your product. To start the registration process, go to www.ciscopress.com/register and log in or create an account*. Enter the product ISBN 9781587205989 and click Submit. After the process is complete, you will find any available bonus content under Registered Products.

*Be sure to check the box that you would like to hear from us to receive exclusive discounts on future editions of this product.

Icons Used in This Book

Command Syntax Conventions

The conventions used to present command syntax in this book are the same conventions used in the IOS Command Reference. The Command Reference describes these conventions as follows:

- Boldface indicates commands and keywords that are entered literally as shown. In actual configuration examples and output (not general command syntax), boldface indicates commands that are manually input by the user (such as a show command).
- Italic indicates arguments for which you supply actual values.
- Vertical bars (1) separate alternative, mutually exclusive elements.
- Square brackets ([]) indicate an optional element.
- Braces ({ }) indicate a required choice.
- Braces within brackets ([{ }]) indicate a required choice within an optional element.

Introduction

About the Exams

Congratulations! If you're reading far enough to look at this book's Introduction, you've probably already decided to go for your Cisco certification. If you want to succeed as a technical person in the networking industry at all, you need to know Cisco. Cisco has a ridiculously high market share in the router and switch marketplace, with more than 80 percent market share in some markets. In many geographies and markets around the world, networking equals Cisco. If you want to be taken seriously as a network engineer, Cisco certification makes perfect sense.

The Exams to Achieve CCENT and CCNA R&S

Cisco announced changes to the CCENT and CCNA Routing and Switching certifications, and the related 100-105 ICND1, 200-105 ICND2, and 200-125 CCNA exams, early in the year 2016. Most everyone new to Cisco certifications begins with either CCENT or CCNA Routing and Switching (CCNA R&S). However, the paths to certification are not quite obvious at first.

The CCENT certification requires a single step: pass the ICND1 exam. Simple enough.

Cisco gives you two options to achieve CCNA R&S certification, as shown in Figure I-1: pass both the ICND1 and ICND2 exams, or just pass the CCNA exam. Both paths cover the same exam topics, but the two-exam path does so spread over two exams rather than one. You also pick up the CCENT certification by going through the two-exam path, but you do not when working through the single-exam (200-125) option.

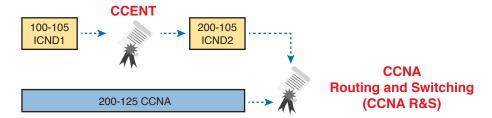


Figure I-1 Cisco Entry-Level Certifications and Exams

Note that Cisco has begun referencing some exams with a version number on some of their websites. If that form holds true, the exams in Figure I-1 will likely be called version 3 (or v3 for short). Historically, the 200-125 CCNA R&S exam is the seventh separate version of the exam (which warrants a different exam number), dating back to 1998. To make sure you reference the correct exam, when looking for information, using forums, and registering for the test, just make sure to use the correct exam number as shown in the figure.

Types of Questions on the Exams

The ICND1, ICND2, and CCNA R&S exams all follow the same general format. At the testing center, you sit in a quiet room with a PC. Before the exam timer begins, you have a chance to do a few other tasks on the PC; for instance, you can take a sample quiz just to get accustomed to the PC and the testing engine. Anyone who has user-level skills in getting around a PC should have no problems with the testing environment. The question types are

- Multiple-choice, single-answer
- Multiple-choice, multiple-answer
- Testlet (one scenario with several multiple-choice questions)
- Drag-and-drop

- Simulated lab (sim)
- Simlet

You should take the time to learn as much as possible by using the Cisco Certification Exam Tutorial, which you can find by going to Cisco.com and searching for "exam tutorial." This tool walks through each type of question Cisco may ask on the exam.

Although the first four types of questions in the list should be familiar to anyone who has taken standardized tests or similar tests in school, the last two types are more common to IT tests and Cisco exams in particular. Both use a network simulator to ask questions, so that you control and use simulated Cisco devices. In particular:

- Sim questions: You see a network topology, a lab scenario, and can access the devices. Your job is to fix a problem with the configuration.
- **Simlet questions:** This style combines sim and testlet question formats. Like a sim question, you see a network topology, a lab scenario, and can access the devices. However, like a testlet, you also see several multiple-choice questions. Instead of changing/fixing the configuration, you answer questions about the current state of the network.

Using these two question styles with the simulator enables Cisco to test your configuration skills with sim questions, and your verification and troubleshooting skills with simlet questions.

What's on the CCNA Exams...and in the Book?

Ever since I was in grade school, whenever the teacher announced that we were having a test soon, someone would always ask, "What's on the test?" Even in college, people would try to get more information about what would be on the exams. At heart, the goal is to know what to study hard, what to study a little, and what to not study at all.

You can find out more about what's on the exam from two primary sources: this book and the Cisco website.

The Cisco Published Exam Topics

First, Cisco tells the world the specific topics on each of their certification exams. For every Cisco certification exam, Cisco wants the public to know both the variety of topics and what kinds of knowledge and skills are required for each topic. Just go to http://www.cisco.com/go/certifications, look for the CCENT and CCNA Routing and Switching pages, and navigate until you see the exam topics.

Note that this book lists those same exam topics in Appendix L, "Exam Topic Cross Reference." This PDF appendix lists two cross references: one with a list of the exam topics in the order in which Cisco lists them on their website; and the other with a list of chapters in this book with the corresponding exam topics included in each chapter.

Cisco does more than just list the topic (for example, IPv4 addressing); they also list the depth to which you must master the topic. The primary exam topics each list one or more verbs that describe the skill level required. For example, consider the following exam topic, which describes one of the most important topics in both CCENT and CCNA R&S:

Configure, verify, and troubleshoot IPv4 addressing and subnetting

Note that this one exam topic has three verbs (configure, verify, and troubleshoot). So, you should be able to not only configure IPv4 addresses and subnets, but also understand them well enough to verify that the configuration works, and to troubleshoot problems when it is not working. And if to do that you need to understand concepts and need to have other knowledge, those details are implied. The exam questions will attempt to assess whether you can configure, verify, and troubleshoot.

The Cisco exam topics provide the definitive list of topics and skill levels required by Cisco for the exams. But the list of exam topics provides only a certain level of depth. For example, the ICND1 100-105 exam topics list has 41 primary exam topics (topics with verbs), plus additional subtopics that provide more details about that technology area. Although very useful, the list of exam topics would take about five pages of this book if laid out in a list.

You should take the time to not only read the exam topics, but read the short material above the exam topics as listed at the Cisco web page for each certification and exam. Look for notices about the use of unscored items, and how Cisco intends the exam topics to be a set of general guidelines for the exams.

This Book: About the Exam Topics

This book provides a complete study system for the Cisco published exam topics for the ICND2 200-105 exam. All the topics in this book either directly relate to some ICND2 exam topic or provide more basic background knowledge for some exam topic. The scope of the book is defined by the exam topics.

For those of you thinking more specifically about the CCNA R&S certification, and the CCNA 200-125 single-exam path to CCNA, this book covers about one-half of the CCNA exam topics. The CCENT/CCNA ICND1 100-105 Official Cert Guide (and ICND1 100-105 exam topics) covers about half of the topics listed for the CCNA 200-125 exam, and this book (and the ICND2 200-105 exam topics) covers the other half. In short, for content, CCNA = ICND1 + ICND2.

Book Features

This book (and the related CCENT/CCNA ICND1 100-105 Official Cert Guide) goes beyond what you would find in a simple technology book. It gives you a study system designed to help you not only learn facts but also to develop the skills you need to pass the exams. To do that, in the technology chapters of the book, about three-quarters of the chapter is about the technology, and about one-quarter is for the related study features.

The "Foundation Topics" section of each chapter contains rich content to explain the topics on the exam and to show many examples. This section makes extensive use of figures, with lists and tables for comparisons. It also highlights the most important topics in each chapter as key topics, so you know what to master first in your study.

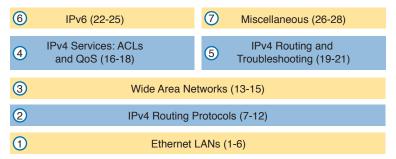
Most of the book's features tie in some way to the need to study beyond simply reading the "Foundation Topics" section of each chapter. The rest of this section explains these book features. And because the book organizes your study by chapter, and then by part (a part contains multiple chapters), and then a final review at the end of the book, the next section of this Introduction discusses the book features introduced by chapter, part, and for final review.

Chapter Features and How to Use Each Chapter

Each chapter of this book is a self-contained short course about one topic area, organized for reading and study as follows:

- **Foundation Topics:** This is the heading for the core content section of the chapter.
- Chapter Review: This section includes a list of study tasks useful to help you remember concepts, connect ideas, and practice skills-based content in the chapter.

In addition to these two main chapter features, each "Chapter Review" section presents a variety of other book features, including the following:


Review Key Topics: In the "Foundation Topics" section, the Key Topic icon appears next to the most important items, for the purpose of later review and mastery. While all content

matters, some is, of course, more important to learn, or needs more review to master, so these items are noted as key topics. The "Review Key Topics" section lists the key topics in a table; scan the chapter for these items to review them.

- Chapter Summary: This section provides a list of the key concepts covered in each chapter for quick reference and review.
- Review Questions: These questions help you test your understanding of the material covered in each chapter.
- Complete Tables from Memory: Instead of just rereading an important table of information, some tables have been marked as memory tables. These tables exist in the Memory Table app that is available on the DVD and from the companion website. The app shows the table with some content removed, and then reveals the completed table, so you can work on memorizing the content.
- Key Terms You Should Know: You do not need to be able to write a formal definition of all terms from scratch. However, you do need to understand each term well enough to understand exam questions and answers. This section lists the key terminology from the chapter. Make sure you have a good understanding of each term, and use the DVD Glossary to cross-check your own mental definitions.
- Labs: Many exam topics use the verbs "configure," "verify," and "troubleshoot"; all these refer to skills you should practice at the command-line interface (CLI) of a router or switch. The Chapter Review refers you to these other tools. The Introduction's section titled "About Building Hands-On Skills" discusses your options.
- Command References: Some book chapters cover a large number of router and switch commands. This section includes reference tables for the commands used in that chapter, along with an explanation. Use these tables for reference, but also use them for study—just cover one column of the table, and see how much you can remember and complete mentally.

Part Features and How to Use Part Review

The book organizes the chapters into seven parts. Each part contains a number of related chapters. Figure I-2 lists the titles of the parts and identifies the chapters in those parts by chapter numbers.

Figure 1-2 The Book Parts and Corresponding Chapter Numbers

Each book part ends with a "Part Review" section that contains a list of activities for study and review, much like the "Chapter Review" section at the end of each chapter. However, because the Part Review takes place after completing a number of chapters, the Part Review includes some tasks meant to help pull the ideas together from this larger body of work. The following list explains the types of tasks added to each Part Review beyond the types mentioned for the Chapter Review:

■ Answer Part Review Questions: The books come with exam software and databases of questions. One database holds questions written specifically for Part Reviews. These questions tend to connect multiple ideas together, to help you think about topics from multiple chapters, and to build the skills needed for the more challenging analysis questions on the exams.

- Mind Maps: Mind maps are graphical organizing tools that many people find useful when learning and processing how concepts fit together. The process of creating mind maps helps you build mental connections. The Part Review elements make use of mind maps in several ways: to connect concepts and the related configuration commands, to connect show commands and the related networking concepts, and even to connect terminology. (For more information about mind maps, see the section "About Mind Maps" later in this Introduction.)
- Labs: Each "Part Review" section will direct you to the kinds of lab exercises you should do with your chosen lab product, labs that would be more appropriate for this stage of study and review. (Check out the later section "About Building Hands-On Skills" for information about lab options.)

In addition to these tasks, many "Part Review" sections have you perform other tasks with book features mentioned in the "Chapter Review" section: repeating chapter review quiz questions, reviewing key topics, and doing more lab exercises.

Final Review

Chapter 29, "Final Review," lists a series of preparation tasks that you can best use for your final preparation before taking the exam. Chapter 29 focuses on a three-part approach to helping you pass: practicing your skills, practicing answering exam questions, and uncovering your weak spots. To that end, Chapter 29 uses the same familiar book features discussed for the Chapter Review and Part Review elements, along with a much larger set of practice questions.

Other Features

In addition to the features in each of the core chapters, this book, as a whole, has additional study resources, including the following:

- Premium Edition Practice Test: This Academic Edition comes with a free version of the Premium Edition Practice Test. To access this test, you will need to redeem the digital product voucher listed on the card in the DVD sleeve in the back of this book. You can take simulated ICND2 exams, as well as CCNA exams, with the Premium Edition Practice Test activation code you will get when you redeem the digital product voucher on our website. (You can take simulated ICND1 and CCNA R&S exams with the DVD in the CCENT/CCNA ICND1 100-105 Official Cert Guide.)
- CCNA ICND2 Simulator Lite: This lite version of the best-selling CCNA Network Simulator from Pearson provides you with a means, right now, to experience the Cisco CLI. No need to go buy real gear or buy a full simulator to start learning the CLI. Just install it from the DVD in the back of this book.
- eBook: This Academic Edition comes complete with three free eBook files. To access these files, you will need to redeem the Premium Edition eBook and Practice Test digital product voucher code found on the access card in the DVD sleeve. This will give you access to the PDF, EPUB, and Kindle versions of the eBook.
- Mentoring Videos: The DVD included with this book includes four other instructional videos about the following topics: OSPF, EIGRP, EIGRP metrics, plus PPP and CHAP.
- Companion website: The website http://www.ciscopress.com/title/9781587205989 posts up-to-the-minute materials that further clarify complex exam topics. Check this site regularly for new and updated postings written by the author that provide further insight into the more troublesome topics on the exam.
- PearsonITCertification.com: The website http://www.pearsonitcertification.com is a great resource for all things IT-certification related. Check out the great CCNA articles, videos, blogs, and other certification preparation tools from the industry's best authors and trainers.

- **CCNA Simulator:** If you are looking for more hands-on practice, you might want to consider purchasing the CCNA Network Simulator. You can purchase a copy of this software from Pearson at http://pearsonitcertification.com/networksimulator or other retail outlets. To help you with your studies, I have created a mapping guide that maps each of the labs in the simulator to the specific sections in these CCNA cert guides. You can get this mapping guide for free on the Extras tab of the companion website.
- Author's website and blogs: I maintain a website that hosts tools and links that are useful when studying for CCENT and CCNA. The site lists information to help you build your own lab, study pages that correspond to each chapter of this book and the ICND1 book, and links to my CCENT Skills blog and CCNA Skills blog. Start at http://www.certskills.com; click the Blog tab for a page about the blogs in particular, with links to the pages with the labs related to this book.

A Big New Feature: Review Applications

One of the single biggest new features of this edition of the book is the addition of study apps for many of the Chapter Review activities. In the past, all Chapter Review activities used only the book chapter, or the chapter plus a DVD-only appendix. Readers tell us they find that content useful, but the content is static.

This book and the CCENT/CCNA ICND1 100-105 Official Cert Guide are the first Cisco Press Cert Guides with extensive interactive applications. Basically, most every activity that can be done in the "Chapter Review" sections can now be done with an application. The apps can be found both on the DVD that comes with the book and on the book's companion website. On the DVD you can find the apps under the "Chapter and Part Review" tab.

The advantages of using these apps are as follows:

- **Easier to use:** Instead of having to print out copies of the appendixes and do the work on paper, these new apps provide you with an easy-to-use, interactive experience that you can easily run over and over.
- Convenient: When you have a spare 5–10 minutes, go to the book's website, and review content from one of your recently finished chapters.
- Untethered from book/DVD: Because these apps are available on the book's companion website in addition to the DVD, you can access your review activities from anywhere—no need to have the book or DVD with you.
- Good for tactile learners: Sometimes looking at a static page after reading a chapter lets your mind wander. Tactile learners may do better by at least typing answers into an app, or clicking inside an app to navigate, to help keep you focused on the activity.

Our in-depth reader surveys show that readers who use the Chapter Review tools like them, but that not everyone uses them consistently. So, we want to increase the number of people using the review tools, and make them both more useful and more interesting. Table I-1 summarizes these new applications and the traditional book features that cover the same content.

Table I-1 Book Features with Both Traditional and App Options

Feature	Traditional	Арр
Key Topics	Table with list; flip pages to find	Key Topics Table app
Config Checklist	Just one of many types of key topics	Config Checklist app
Memory Table	Two static PDF appendixes (one with sparse tables for you to complete, one with completed tables)	Memory Table app

Feature	Traditional	Арр
Key Terms	Listed in each "Chapter Review" section, with the Glossary in the back of the book	Glossary Flash Cards app
IPv4 ACL Practice	A static PDF appendix (D) with practice problems	An interactive app that asks the same problems as listed in the appendix

How to Get the Electronic Elements of This Book

Traditionally, all chapter review activities use the book chapter plus appendixes, with the appendixes often being located on the DVD. But most of that content is static—useful, but static.

If you buy the print book, and have a DVD drive, you have all the content on the DVD. Just spin the DVD and use the disk menu (which should automatically start) to explore all the content.

If you buy the print book but do not have a DVD drive, you can get the DVD files by redeeming your Premium Edition eBook and Practice Test digital product voucher code on our website. After you have redeemed this product, your book will automatically be registered on your account page. Simply go to your account page, click the Registered Products tab, and select Access Bonus **Content** to access the book's companion website.

Book Organization, Chapters, and Appendixes

This book contains 28 core chapters, Chapters 1 through 28, with Chapter 29 as the "Final Review" chapter. Each core chapter covers a subset of the topics on the ICND2 exam. The core chapters are organized into sections. The core chapters cover the following topics:

Part I: Ethernet LANs

- Chapter 1, "Implementing Ethernet Virtual LANs," explains the concepts and configuration surrounding virtual LANs, including VLAN trunking.
- Chapter 2, "Spanning Tree Protocol Concepts," discusses the concepts behind IEEE Spanning Tree Protocol (STP) and how it makes some switch interfaces block frames to prevent frames from looping continuously around a redundant switched LAN.
- Chapter 3, "Spanning Tree Protocol Implementation," shows how to configure and verify STP on Cisco switches.
- Chapter 4, "LAN Troubleshooting," examines the most common LAN switching issues and how to discover those issues when troubleshooting a network. The chapter includes troubleshooting topics for STP/RSTP, Layer 2 EtherChannel, LAN switching, VLANs, and VLAN trunking.
- Chapter 5, "VLAN Trunking Protocol," shows how to configure, verify, and troubleshoot the use of VLAN Trunking Protocol (VTP) to define and advertise VLANs across multiple Cisco switches.
- Chapter 6, "Miscellaneous LAN Topics," as the last chapter in the book specifically about LANs, discusses a variety of small topics, including: 802.1x, AAA authentication, DHCP snooping, switch stacking, and chassis aggregation.

Part II: IPv4 Routing Protocols

- Chapter 7, "Understanding OSPF Concepts," introduces the fundamental operation of the Open Shortest Path First (OSPF) protocol, focusing on link state fundamentals, neighbor relationships, flooding link state data, and calculating routes based on the lowest cost metric.
- Chapter 8, "Implementing OSPF for IPv4," takes the concepts discussed in the previous chapter and shows how to configure and verify those same features.

- Chapter 9, "Understanding EIGRP Concepts," introduces the fundamental operation of the Enhanced Interior Gateway Routing Protocol (EIGRP) for IPv4 (EIGRPv4), focusing on EIGRP neighbor relationships, how EIGRP calculates metrics, and how it quickly converges to alternate feasible successor routes.
- Chapter 10, "Implementing EIGRP for IPv4," takes the concepts discussed in the previous chapter and shows how to configure and verify those same features.
- Chapter 11, "Troubleshooting IPv4 Routing Protocols," walks through the most common problems with IPv4 routing protocols, while alternating between OSPF examples and EIGRP examples.
- Chapter 12, "Implementing External BGP," examines the basics of the Border Gateway Protocol (BGP) and its use between an enterprise and an ISP, showing how to configure, verify, and troubleshoot BGP in limited designs.

Part III: Wide Area Networks

- Chapter 13, "Implementing Point-to-Point WANs," explains the core concepts of how to build a leased-line WAN and the basics of the two common data link protocols on these links: HDLC and PPP.
- Chapter 14, "Private WANs with Ethernet and MPLS," explores the concepts behind building a WAN service using Ethernet through different Metro Ethernet services, as well as using Multiprotocol Label Switching (MPLS) VPNs.
- Chapter 15, "Private WANs with Internet VPNs," works through a variety of conceptual material, plus some configuration and verification topics, for several technologies related to using the Internet to create a private WAN connection between different enterprise sites.

Part IV: IPv4 Services: ACLs and QoS

- Chapter 16, "Basic IPv4 Access Control Lists," examines how standard IP ACLs can filter packets based on the source IP address so that a router will not forward the packet.
- Chapter 17, "Advanced IPv4 Access Control Lists," examines both named and numbered ACLs, and both standard and extended IP ACLs.
- Chapter 18, "Quality of Service (QoS)," discusses a wide variety of concepts all related to the broad topic of QoS.

Part V: IPv4 Routing and Troubleshooting

- Chapter 19, "IPv4 Routing in the LAN," shows to a configuration and troubleshooting depth different methods to route between VLANs, including Router on a Stick (ROAS), Layer 3 switching with SVIs, Layer 3 switching with routed ports, and using Layer 3 EtherChannels.
- Chapter 20, "Implementing HSRP for First-Hop Routing," discusses the need for a First Hop Redundancy Protocol (FHRP), and specifically how to configure, verify, and troubleshoot Hot Standby Router Protocol (HSRP)
- Chapter 21, "Troubleshooting IPv4 Routing," looks at the most common IPv4 problems and how to find the root causes of those problems when troubleshooting.

Part VI: IPv6

- Chapter 22, "IPv6 Routing Operation and Troubleshooting," reviews IPv6 routing as discussed in the ICND1 book. It then shows some of the most common problems with IPv6 routing and discusses how to troubleshoot these problems to discover the root cause.
- Chapter 23, "Implementing OSPF for IPv6," explores OSPFv3 and its use as an IPv6 routing protocol, showing traditional configuration, verification, and troubleshooting topics.

- Chapter 24, "Implementing EIGRP for IPv6," takes the EIGRP concepts discussed for IPv4 in Chapter 9 and shows how those same concepts apply to EIGRP for IPv6. It then shows how to configure, verify, and troubleshoot EIGRP for IPv6.
- Chapter 25, "IPv6 Access Control Lists," examines the similarities and differences between IPv4 ACLs and IPv6 ACLs, then shows how to configure, verify, and troubleshoot IPv6 ACLs.

Part VII: Miscellaneous

- Chapter 26, "Network Management," discusses several network management topics that Cisco did not choose to put into ICND1, namely: SNMP, IP SLA, and SPAN.
- Chapter 27, "Cloud Computing," is one of two chapters about topics that strays from traditional CCNA R&S topics as one of the Cisco emerging technology topics. This chapter explains the basic concepts and then generally discusses the impact that cloud computing has on a typical enterprise network.
- Chapter 28, "SDN and Network Programmability," is the other chapter that moves away from traditional CCNA R&S topics to discuss many concepts and terms related to how Software Defined Networking (SDN) and network programmability are impacting typical enterprise networks.

Part VIII: Final Prep

■ Chapter 29, "Final Review," suggests a plan for final preparation once you have finished the core parts of the book, in particular explaining the many study options available in the book.

Part IX: Appendixes (In Print)

- Appendix A, "Numeric Reference Tables," lists several tables of numeric information, including a binary-to-decimal conversion table and a list of powers of 2.
- Appendix B, "CCNA ICND2 200-105 Exam Updates," is a place for the author to add book content mid-edition. Always check online for the latest PDF version of this appendix; the appendix lists download instructions.
- The Glossary contains definitions for all of the terms listed in the "Key Terms You Should Know" sections at the conclusion of Chapters 1 through 28.

Part X: DVD Appendixes

The following appendixes are available in digital format on the DVD that accompanies this book:

- Appendix C, "Answers to the Chapter Review Quizzes," includes the explanations to all the questions from Chapters 1 through 28.
- Appendix D, "Practice for Chapter 16: Basic IPv4 Access Control Lists," is a copy of the CCENT/CCNA ICND1 100-105 Official Cert Guide's Appendix I.
- Appendix E, "Mind Map Solutions," shows an image of sample answers for all the partending mind map exercises.
- **Appendix F, "Study Planner,"** is a spreadsheet with major study milestones, where you can track your progress through your study.
- Appendix G, "Learning IPv4 Routes with RIPv2," explains how routers work together to find all the best routes to each subnet using a routing protocol. This chapter also shows how to configure the RIPv2 routing protocol for use with IPv4. (This appendix is a copy of ICND1's Chapter 19, and is included with the ICND2 book for convenience.)
- Appendix H, "Understanding Frame Relay Concepts," explains how to build a Frame Relay WAN between routers, focusing on the protocols and concepts rather than the configuration. (This chapter is a chapter that covers old exam topics from the previous edition of the book, included here for those who might be interested.)

- Appendix I, "Implementing Frame Relay," takes the concepts discussed in Appendix H and shows how to configure, verify, and troubleshoot those same features. (This chapter is a chapter that covers old exam topics from the previous edition of the book, included here for those who might be interested.)
- Appendix J, "IPv4 Troubleshooting Tools," focuses on how to use two key troubleshooting tools to find routing problems: the **ping** and **traceroute** commands. (This appendix is a copy of ICND1's Chapter 23, and is included with the ICND2 book for convenience.)
- Appendix K, "Topics from Previous Editions," is a collection of information about topics that have appeared on previous versions of the CCNA exams. While you most likely will not encounter exam questions on these topics, the concepts are still of interest to someone with the CCENT or CCNA certification.
- Appendix L, "Exam Topic Cross Reference," provides some tables to help you find where each exam objective is covered in the book.

ICND1 Chapters in this Book

For this current edition of the ICND1 and ICND2 Cert Guides, I designed several chapters to be used in both books. These chapters include some topics that are listed in the exam topics of both exams:

- Chapter 1, "Implementing Ethernet Virtual LANs" (Chapter 11 in the ICND1 100-105 book).
- Chapter 16, "Basic IPv4 Access Control Lists" (Chapter 25 in the ICND1 100-105 book).
- Chapter 17, "Advanced IPv4 Access Control Lists" (Chapter 26 in the ICND1 100-105 book).
- Chapter 21, "Troubleshooting IPv4 Routing" (Chapter 24 in the ICND1 100-105 book).

I designed these four chapters for use in both books to be a help to those reading both books while avoiding any problems for those who might be reading only this ICND2 Cert Guide. Cisco has traditionally had some topics that overlap between the two exams that make up the two-exam path to CCNA R&S, and this current pair of exams is no exception. So, for those of you who have already read the ICND1 100-105 book, you can move more quickly through the above four chapters in this book. If you did not read the ICND1 100-105 book, then you have all the material you need right here in this book.

Extra Content Found in DVD Appendixes

Note that several appendixes on the DVD, namely G, H, I, J, and K, contain extra content outside the ICND2 200-105 exam topics. This short section explains why.

First, two appendixes are here to aid the transition when Cisco announced the exams. Appendixes G (about RIP) and J (about ping and traceroute) are copies of two chapters in the ICND1 100-105 book, and are part of the exam topics for the ICND1 100-105 exam. These two chapters might be particularly useful for anyone who was far along in their studies on the date when Cisco announced the ICND1 100-105 and ICND2 200-105 exams in 2016. I included Appendixes G and J to aid that transition for those who buy the ICND2 200-105 Cert Guide but not the ICND1 100-105 Cert Guide.

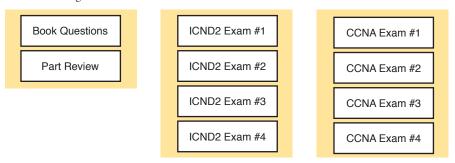
Three other appendixes are included for instructors who use these books for classes, as well as for the occasional reader who is mostly interested in the technology instead of the certification. Appendixes H, I, and K contain content that is no longer mentioned by the exam topics for the current exams. Appendixes H and I are copies of complete chapters about Frame Relay from the prior edition of this book, and Appendix K is a compilation of small topics I removed from the prior edition of this book when creating this current edition. This material might be helpful to some instructors during the transition time for their courses, or for those who want to read more broadly just for the sake of learning.

You do not need to use these extra appendixes (G through K) to prepare for the ICND2 200-105 exam or the CCNA R&S 200-125 exam, but feel free to use them if you are interested.

Reference Information

This short section contains a few topics available for reference elsewhere in the book. You may read these when you first use the book, but you may also skip these topics and refer back to them later. In particular, make sure to note the final page of this introduction, which lists several contact details, including how to get in touch with Cisco Press.

Install the Pearson IT Certification Practice Test Engine and Questions


This book, like many other Cisco Press books, includes the rights to use the Pearson IT Certification Practice Test (PCPT) software, along with rights to use some exam questions related to this book. PCPT has many options, including the option to answer questions in study mode, so you can see the answers and explanations for each question as you go along; the option to take a simulated exam that mimics real exam conditions; and the option to view questions in flash card mode, where all the answers are stripped out, challenging you to answer questions from memory.

You should install PCPT so it is ready to use even for the earliest chapters. This book's Part Review sections ask you specifically to use PCPT, and you can even take the book chapter quizzes using PCPT.

NOTE The right to use the exams associated with this book is based on an activation code. Redeeming the Premium Edition eBook and Practice Test digital product voucher code in this book will automatically populate your account page with the PCPT software activation code you need to unlock your exams. Do not lose the activation code.

PCPT Exam Databases with This Book

This book includes an activation code that allows you to load a set of practice questions. The questions come in different exams or exam databases. When you install the PCPT software and type in the activation code, the PCPT software downloads the latest version of all these exam databases. And with the ICND2 book alone, you get six different "exams," or six different sets of questions, as listed in Figure I-3.

Figure I-3 *PCPT Exams/Exam Databases and When to Use Them*

You can choose to use any of these exam databases at any time, both in study mode and practice exam mode. However, many people find it best to save some of the exams until exam review time, after you have finished reading the entire book. Figure I-3 begins to suggest a plan, spelled out

■ During Part Review, use PCPT to review the book questions for that part, using study mode.

- During Part Review, use the questions built specifically for Part Review (the Part Review questions) for that part of the book, using study mode.
- Save the remaining exams to use with the "Final Review" chapter at the end of the book; if preparing for the ICND2 exam, use those practice exams, but if preparing for the CCNA exam, use those exams.

The two modes inside PCPT give you better options for study versus practicing a timed exam event. In study mode, you can see the answers immediately, so you can study the topics more easily. Also, you can choose a subset of the questions in an exam database; for instance, you can view questions from only the chapters in one part of the book.

PCPT practice mode lets you practice an exam event somewhat like the actual exam. It gives you a preset number of questions, from all chapters, with a timed event. Practice exam mode also gives you a score for that timed event.

How to View Part Review Questions

The exam databases you get with this book include a database of questions created solely for study during the Part Review process. Book questions focus more on facts, to help you determine whether you know the facts contained within the chapter. The Part Review questions instead focus more on application of those facts to typical real scenarios, and look more like real exam questions.

To view these questions, follow the same process as you did with book questions, but select the Part Review database rather than the book database. PCPT has a clear name for this database: Part Review Ouestions.

About Mind Maps

Mind maps are a type of visual organization tool that you can use for many purposes. For instance, you can use mind maps as an alternative way to take notes.

You can also use mind maps to improve how your brain organizes concepts. Mind maps improve your brain's connections and relationships between ideas. When you spend time thinking about an area of study, and organize your ideas into a mind map, you strengthen existing mental connections and create new connections, all into your own frame of reference.

In short, mind maps help you internalize what you learn.

Each mind map begins with a blank piece of paper or blank window in a mind mapping application. You then add a large central idea, with branches that move out in any direction. The branches contain smaller concepts, ideas, commands, pictures...whatever idea needs to be represented. Any concepts that can be grouped should be put near each other. As need be, you can create deeper and deeper branches, although for this book's purposes, most mind maps will not go beyond a couple of levels.

NOTE Many books have been written about mind maps, but Tony Buzan often gets credit for formalizing and popularizing mind maps. You can learn more about mind maps at his website, http://www.tonybuzan.com.

For example, Figure I-4 shows a sample mind map that begins to output some of the IPv6 content from Part VIII of the ICND1 book. You might create this kind of mind map when reviewing IPv6 addressing concepts, starting with the big topic of "IPv6 addressing," and then writing down random terms and ideas. As you start to organize them mentally, you draw lines connecting the ideas, reorganize them, and eventually reach the point where you believe the organization of ideas makes sense to you.

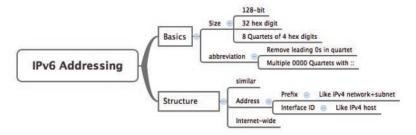


Figure I-4 Sample Mind Map

Mind maps may be the least popular but most effective study tool suggested in this book. I personally find a huge improvement in learning new areas of study when I mind map; I hope you will make the effort to try these tools and see if they work well for you too.

Finally, for mind mapping tools, you can just draw them on a blank piece of paper, or find and download a mind map application. I have used Mind Node Pro on a Mac, and we build the sample mind maps with XMIND, which has free versions for Windows, Linux, and OS X.

About Building Hands-On Skills

You need skills in using Cisco routers and switches, specifically the Cisco CLI. The Cisco CLI is a text-based command-and-response user interface; you type a command, and the device (a router or switch) displays messages in response. To answer sim and simlet questions on the exams, you need to know a lot of commands, and you need to be able to navigate to the right place in the CLI to use those commands.

This section walks through the options included in the book, with a brief description of lab options outside the book.

Config Lab Exercises

Some router and switch features require multiple configuration commands. Part of the skill you need to acquire is the ability to remember which configuration commands work together, which ones are required, and which ones are optional. So, the challenge level goes beyond just picking the right parameters on one command. You have to choose which commands to use, in which combination, typically on multiple devices. And getting good at that kind of task requires practice.

The Config Labs feature, introduced as a new feature in this edition of the book, helps provide that practice. Each lab presents a sample lab topology, with some requirements, and you have to decide what to configure on each device. The answer then shows a sample configuration. You job is to create the configuration, and then check your answer versus the supplied answer.

Also for the first time, this edition places the content not only outside the book but also on the author's blog site. To reach my blog sites for ICND1 content or for ICND2 content (two different blogs) and access the Config Labs feature, you can start at my blog launch site (blog.certskills.com) and click from there.

blog.certskills.com/ccent/ Wendell's CCENT (ICND1): In the menus, navigate to Hands On > Config Lab

blog.certskills.com/ccna/ Wendell's CCNA (ICND2): In the menus, navigate to Hands On > Config Lab

Both blogs are geared toward helping you pass the exams, so feel free to look around. Note that the Config Lab posts should show an image like this in the summary:

Figure I-5 Config Lab Logo in the Author's Blogs

These Config Labs have several benefits, including the following:

- Untethered and responsive: Do them from anywhere, from any web browser, from your phone or tablet, untethered from the book or DVD.
- **Designed for idle moments:** Each lab is designed as a 5- to 10-minute exercise if all you are doing is typing in a text editor or writing your answer on paper.
- Two outcomes, both good: Practice getting better and faster with basic configuration, or if you get lost, you have discovered a topic that you can now go back and reread to complete your knowledge. Either way, you are a step closer to being ready for the exam!
- **Blog format:** Allows easy adds and changes by me, and easy comments by you.
- Self-assessment: As part of final review, you should be able to do all the Config Labs, without help, and with confidence.

Note that the blog organizes these Config Lab posts by book chapter, so you can easily use these at both Chapter Review and Part Review. See the "Your Study Plan" element that follows the Introduction for more details about those review sections.

A Quick Start with Pearson Network Simulator Lite

The decision of how to get hands-on skills can be a little scary at first. The good news is that you have a free and simple first step to experience the CLI: Install and use the Pearson NetSim Lite that comes with this book.

This book comes with a lite version of the best-selling CCNA Network Simulator from Pearson, which provides you with a means, right now, to experience the Cisco CLI. No need to go buy real gear or buy a full simulator to start learning the CLI. Just install NetSim Lite from the DVD in the back of this book.

The latest version of NetSim Lite includes labs associated with Part II of this book. Part I includes concepts only, with Part II being the first part with commands. So, make sure and use NetSim Lite to learn the basics of the CLI to get a good start.

Of course, one reason that NetSim Lite comes on the DVD is that the publisher hopes you will buy the full product. However, even if you do not use the full product, you can still learn from the labs that come with NetSim Lite while deciding about what options to pursue.

NOTE The ICND1 and ICND2 books each contain a different version of the Sim Lite product, each with labs that match the book content. If you bought both books, make sure you install both Sim Lite products.

The Pearson Network Simulator

The Config Labs and the Pearson Network Simulator Lite both fill specific needs, and they both come with the book. However, you need more than those two tools.

The single best option for lab work to do along with this book is the paid version of the Pearson Network Simulator. This simulator product simulates Cisco routers and switches so that you can learn for the CCENT and CCNA R&S certifications. But more importantly, it focuses on learning for the exam by providing a large number of useful lab exercises. Reader surveys tell us that those people who use the Simulator along with the book love the learning process, and rave about how the book and Simulator work well together.

Of course, you need to make a decision for yourself, and consider all the options. Thankfully, you can get a great idea of how the full Simulator product works by using the Pearson Network Simulator Lite product included with the book. Both have the same base code and same user interface, and the same types of labs. Try the Lite version, and check out the full product. There is a full product for CCENT only, and another for CCNA R&S (which includes all the labs in the CCENT product, plus others for the ICND2 parts of the content).

Note that the Simulator and the books work on a different release schedule. For a time in 2016, the version of the Simulator available for purchase will be the Simulator created for the previous versions of the exams (ICND1 100-101, ICND2 200-101, and CCNA 200-120). That product includes approximately 80 percent of the CLI topics in the ICND1 100-105 and ICND2 200-105 books. So during that time, the Simulator is still very useful.

On a practical note, when you want to do labs while reading a chapter or doing Part Review, the Simulator organizes the labs to match the book. Just look for the "Sort by Chapter" tab in the Simulator's user interface. However, during the months in 2016 for which the available Simulator is the older edition listing the older exams in the title, you will need to refer back to a PDF that lists those labs versus this book's organization; find that PDF at http://www.ciscopress.com/title/9781587205798.

More Lab Options

If you decide against using the full Pearson Network Simulator, you still need hands-on experience. You should plan to use some lab environment to practice as much CLI interaction as possible.

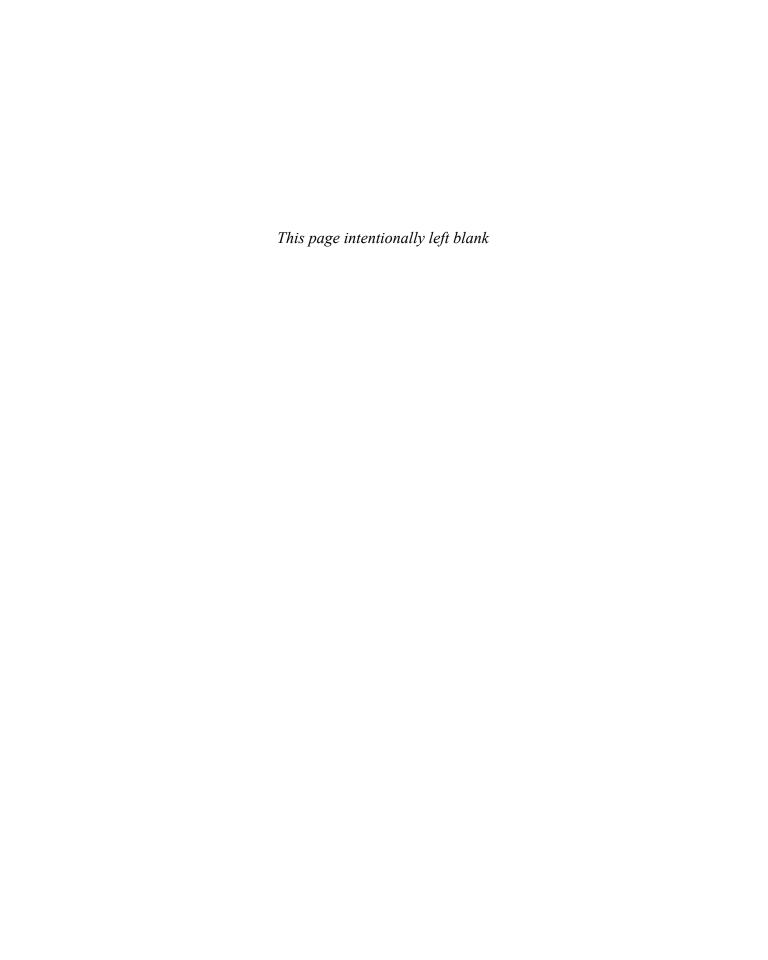
First, you can use real Cisco routers and switches. You can buy them, new or used, or borrow them at work. You can rent them for a fee. If you have the right mix of gear, you could even do the Config Lab exercises from my blog on that gear, or try and re-create examples from the book.

Cisco offers a virtualization product that lets you run router and switch operating system (OS) images in a virtual environment. This tool, the Virtual Internet Routing Lab (VIRL), lets you create a lab topology, start the topology, and connect to real router and switch OS images. Check out http://virl.cisco.com for more information.

You can even rent virtual Cisco router and switch lab pods from Cisco, in an offering called Cisco Learning Labs.

All these previously mentioned options cost some money, but the next two are generally free to the user, but with a different catch for each. First, GNS3 works somewhat like VIRL, creating a virtual environment running real Cisco IOS. However, GNS3 is not a Cisco product, and cannot provide you with the IOS images for legal reasons.

Cisco also makes a simulator that works very well as a learning tool: Cisco Packet Tracer. However, Cisco intends Packet Tracer for use by people currently enrolled in Cisco Networking Academy courses, and not for the general public. So, if you are part of a Cisco Academy, definitely use Packet Tracer.


This book does not tell you what option to use, but you should plan on getting some hands-on practice somehow. The important thing to know is that most people need to practice using the Cisco CLI to be ready to pass these exams.

For More Information

If you have any comments about the book, submit them via http://www.ciscopress.com. Just go to the website, select **Contact Us**, and type your message.

Cisco might make changes that affect the CCNA certification from time to time. You should always check http://www.cisco.com/go/ccna and http://www.cisco.com/go/ccnt for the latest details.

The CCNA ICND2 200-105 Official Cert Guide helps you attain CCNA Routing and Switching certification. This is the CCNA and ICND2 certification book from the only Cisco-authorized publisher. We at Cisco Press believe that this book certainly can help you achieve CCNA certification, but the real work is up to you! I trust that your time will be well spent.

TCP/IP networks need IP routes. Part II collects six chapters focused on the IPv4 routing protocols discussed within the scope of ICND2.

The first four chapters in this part of the book deliver the details of OSPF Version 2 and then EIGRP. Chapter 7 begins with OSPFv2 concepts, followed by OSPFv2 implementation details (configuration and verification) in Chapter 8. Chapters 9 and 10 take the same approach to EIGRP, with one chapter of concepts (Chapter 9) and one chapter of implementation details (Chapter 10).

Chapter 11 pulls those four chapters about the OSPFv2 and EIGRP routing protocols together by discussing troubleshooting for both topics. Although they are different protocols, troubleshooting EIGRP and OSPFv2 requires the same kinds of logic and items to check. This chapter works through the details.

Finally, for the first time in the history of Cisco's CCNA R&S exam, Cisco has added more than a basic mention of BGP to the exam topics. Chapter 12 closes Part II with discussion of External BGP (eBGP), used between an enterprise and an ISP. That discussion includes basic concepts, configuration, and verification.

Part II

IPv4 Routing Protocols

Chapter 7: Understanding OSPF Concepts

Chapter 8: Implementing OSPF for IPv4

Chapter 9: Understanding EIGRP Concepts

Chapter 10: Implementing EIGRP for IPv4

Chapter 11: Troubleshooting IPv4 Routing Protocols

Chapter 12: Implementing External BGP

Part II Review

Chapter 8

Implementing OSPF for IPv4

Chapter 7, "Understanding OSPF Concepts," introduced you to the concepts, so this chapter moves on to the implementation details for Open Shortest Path First Version 2 (OSPFv2)—that is, OSPF as used for IPv4. This chapter looks at how to configure and verify a variety of OSPFv2 features.

This chapter touches on a wide variety of configuration options, so it breaks the content down into the three major sections. The first major section shows how to configure and verify basic OSPFv2 with a single-area design. With a single area, all interfaces sit in the same area, and that fact has an impact on the kinds of information lists in **show** command output. Also, the first section uses traditional OSPFv2 configuration using the OSPF **network** command. The second major section repeats the same kinds of configuration and verification as in the first major section, but now with multiarea OSPF designs.

The third major section of the chapter looks at a variety of common OSPFv2 features. These features include a completely different way to enable OSPFv2 on a Cisco router, using interface subcommands rather than the OSPF **network** command. It also includes the configuration of OSPF default routes, tuning OSPF metrics, and OSPF load balancing.

Finally, take a moment to reread the exam topics at the top of this page. Note that the exam topics specifically exclude some OSPF topics.

This chapter covers the following exam topics:

2.0 Routing Technologies

2.4 Configure, verify, and troubleshoot single area and multiarea OSPFv2 for IPv4 (excluding authentication, filtering, manual summarization, redistribution, stub, virtual-link, and LSAs)

Foundation Topics

Implementing Single-Area OSPFv2

OSPF configuration includes only a few required steps, but it has many optional steps. After an OSPF design has been chosen—a task that can be complex in larger IP internetworks—the configuration can be as simple as enabling OSPF on each router interface and placing that interface in the correct OSPF area.

This section shows several configuration examples, all with a single-area OSPF internetwork. Following those examples, the text goes on to cover several of the additional optional configuration settings. For reference, the following list outlines the configuration steps covered in this first major section of the chapter, as well as a brief reference to the required commands:

- **Step 1.** Use the **router ospf** *process-id* global command to enter OSPF configuration mode for a particular OSPF process.
- **Step 2.** (Optional) Configure the OSPF router ID by doing the following:
 - **A.** Use the **router-id** *id-value* router subcommand to define the router ID
 - **B.** Use the **interface loopback** *number* global command, along with an **ip address** *address mask* command, to configure an IP address on a loopback interface (chooses the highest IP address of all working loopbacks)
 - **C.** Rely on an interface IP address (chooses the highest IP address of all working nonloopbacks)
- **Step 3.** Use one or more **network** *ip-address wildcard-mask* **area** *area-id* router subcommands to enable OSPFv2 on any interfaces matched by the configured address and mask, enabling OSPF on the interface for the listed area.
- **Step 4.** (Optional) Use the **passive-interface** *type number* router subcommand to configure any OSPF interfaces as passive if no neighbors can or should be discovered on the interface.

For a more visual perspective on OSPFv2 configuration, Figure 8-1 shows the relationship between the key OSPF configuration commands. Note that the configuration creates a routing process in one part of the configuration, and then indirectly enables OSPF on each interface. The configuration does not name the interfaces on which OSPF is enabled, instead requiring IOS to apply some logic by comparing the OSPF **network** command to the interface **ip address** commands. The upcoming example discusses more about this logic.

Configuration

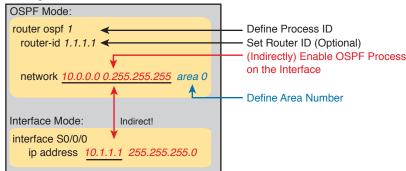


Figure 8-1 Organization of OSPFv2 Configuration

OSPF Single-Area Configuration

Figure 8-2 shows a sample network that will be used for the single-area OSPF configuration examples. All links sit in area 0. The design has four routers, each connected to one or two LANs. However, note that Routers R3 and R4, at the top of the figure, connect to the same two VLANs/subnets, so they will form neighbor relationships with each other over each of those VLANs as well. (The two switches at the top of the design are acting as Layer 2 switches.)

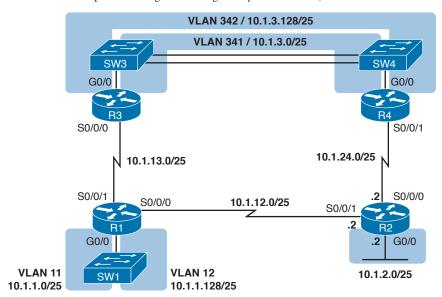


Figure 8-2 Sample Network for OSPF Single-Area Configuration

Example 8-1 shows the IPv4 addressing configuration on Router R3, before getting into the OSPF detail. The configuration enables 802.1Q trunking on R3's G0/0 interface, and assigns an IP address to each subinterface. (Not shown, switch S3 has configured trunking on the other side of that Ethernet link.)

Example 8-1 IPv4 Address Configuration on R3 (Including VLAN Trunking)

```
interface GigabitEthernet 0/0.341
encapsulation dot1q 341
ip address 10.1.3.1 255.255.255.128
!
interface GigabitEthernet 0/0.342
encapsulation dot1q 342
ip address 10.1.3.129 255.255.255.128
!
interface serial 0/0/0
ip address 10.1.13.3 255.255.255.128
```

The beginning single-area configuration on R3, as shown in Example 8-2, enables OSPF on all the interfaces shown in Figure 8-2. First, the **router ospf 1** global command puts the user in OSPF configuration mode, and sets the OSPF *process-id*. This number just needs to be unique on the local router, allowing the router to support multiple OSPF processes in a single router by using different process IDs. (The **router** command uses the *process-id* to distinguish between the processes.) The *process-id* does not have to match on each router, and it can be any integer between 1 and 65,535.

Example 8-2 OSPF Single-Area Configuration on R3 Using One network Command

router ospf 1 network 10.0.0.0 0.255.255.255 area 0

Speaking generally rather than about this example, the OSPF network command tells a router to find its local interfaces that match the first two parameters on the network command. Then, for each matched interface, the router enables OSPF on those interfaces, discovers neighbors, creates neighbor relationships, and assigns the interface to the area listed in the network command. (Note that the area can be configured as either an integer or a dotted-decimal number, but this book makes a habit of configuring the area number as an integer. The integer area numbers range from 0 through 4,294,967,295.)

For the specific command in Example 8-2, any matched interfaces are assigned to area 0. However, the first two parameters—the ip_address and wildcard_mask parameter values of 10.0.0.0 and 0.255.255.255—need some explaining. In this case, the command matches all three interfaces shown for Router R3; the next topic explains why.

Matching with the OSPF network Command

The key to understanding the traditional OSPFv2 configuration shown in this first example is to understand the OSPF network command. The OSPF network command compares the first parameter in the command to each interface IP address on the local router, trying to find a match. However, rather than comparing the entire number in the network command to the entire IPv4 address on the interface, the router can compare a subset of the octets, based on the wildcard mask, as follows:

Wildcard 0.0.0.0: Compare all 4 octets. In other words, the numbers must exactly match.

Wildcard 0.0.0.255: Compare the first 3 octets only. Ignore the last octet when comparing the numbers.

Wildcard 0.0.255,255: Compare the first 2 octets only. Ignore the last 2 octets when comparing the numbers.

Wildcard 0.255.255.255: Compare the first octet only. Ignore the last 3 octets when comparing the numbers.

Wildcard 255.255.255.255: Compare nothing—this wildcard mask means that all addresses will match the network command.

Basically, a wildcard mask value of 0 in an octet tells IOS to compare to see if the numbers match, and a value of 255 tells IOS to ignore that octet when comparing the numbers.

The network command provides many flexible options because of the wildcard mask. For example, in Router R3, many network commands could be used, with some matching all interfaces, and some matching a subset of interfaces. Table 8-1 shows a sampling of options, with notes.

Table 8-1 Example OSPF network Commands on R3, with Expected Results

Command	Logic in Command	Matched Interfaces
network 10.1.0.0 0.0.255.255	Match interface IP addresses that begin with 10.1	G0/0.341 G0/0.342 S0/0/0
network 10.0.0.0 0.255.255.255	Match interface IP addresses that begin with 10	G0/0.341 G0/0.342 S0/0/0

Command	Logic in Command	Matched Interfaces
network 0.0.0.0	Match all interface IP addresses	G0/0.341
255.255.255.255		G0/0.342
		S0/0/0
network 10.1.13.0 0.0.0.255	Match interface IP addresses that begin with 10.1.13	S0/0/0
network 10.1.3.1 0.0.0.0	Match one IP address: 10.1.3.1	G0/0.341

The wildcard mask gives the local router its rules for matching its own interfaces. For example, Example 8-2 shows R3 using the network 10.0.0.0 0.255.255.255 area 0 command. However, the wildcard mask allows for many different valid OSPF configurations. For instance, in that same internetwork, Routers R1 and R2 could use the configuration shown in Example 8-3, with two other wildcard masks. In both routers, OSPF is enabled on all the interfaces shown in Figure 8-2.

Example 8-3 OSPF Configuration on Routers R1 and R2

```
! R1 configuration next - one network command enables OSPF
! on all three interfaces
router ospf 1
network 10.1.0.0 0.0.255.255 area 0
! R2 configuration next - One network command per interface
router ospf 1
network 10.1.12.2 0.0.0.0 area 0
network 10.1.24.2 0.0.0.0 area 0
 network 10.1.2.2 0.0.0.0 area 0
```

Finally, note that other wildcard mask values can be used as well, as long as the wildcard mask in binary is one unbroken string of 0s and another single string of binary 1s. Basically, that includes all wildcard masks that could be used to match all IP addresses in a subnet, as discussed in the "Finding the Right Wildcard Mask to Match a Subnet" section of Chapter 16, "Basic IPv4 Access Control Lists" (which is Chapter 25 of the ICND1 Cert Guide). For example, a mask of 0.255.255.0 would not be allowed.

NOTE The first two parameters of the **network** command are the address and the wildcard mask. By convention, if the wildcard mask octet is 255, the matching address octet should be configured as a 0. Interestingly, IOS will actually accept a network command that breaks this rule, but then IOS will change that octet of the address to a 0 before putting it into the running configuration file. For example, IOS will change a typed command that begins with network 1.2.3.4 0.0.255.255 to network 1.2.0.0 0.0.255.255.

Verifying OSPFv2 Single Area

As mentioned in Chapter 7, OSPF routers use a three-step process to eventually add OSPFlearned routes to the IP routing table. First, they create neighbor relationships. Then they build and flood LSAs, so each router in the same area has a copy of the same LSDB. Finally, each router independently computes its own IP routes using the SPF algorithm and adds them to its routing table.

The show ip ospf neighbor, show ip ospf database, and show ip route commands display information for each of these three steps, respectively. To verify OSPF, you can use the same sequence.

Or, you can just go look at the IP routing table, and if the routes look correct, OSPF probably worked.

For example, first, examine the list of neighbors known on Router R3 from the configuration in Examples 8-1, 8-2, and 8-3. R3 should have one neighbor relationship with R1, over the serial link. It also has two neighbor relationships with R4, over the two different VLANs to which both routers connect. Example 8-4 shows all three.

Example 8-4 OSPF Neighbors on Router R3 from Figure 8-2

R3# show ip os	pf neig	hbor			
Neighbor ID	Pri	State	Dead Time	Address	Interface
1.1.1.1	0	FULL/ -	00:00:33	10.1.13.1	Serial0/0/0
10.1.24.4	1	FULL/DR	00:00:35	10.1.3.130	GigabitEthernet0/0.342
10.1.24.4	1	FULL/DR	00:00:36	10.1.3.4	GigabitEthernet0/0.341

The detail in the output mentions several important facts, and for most people, working right to left works best in this case. For example, looking at the headings:

Interface: This is the local router's interface connected to the neighbor. For example, the first neighbor in the list is reachable through R3's S0/0/0 interface.

Address: This is the neighbor's IP address on that link. Again, for this first neighbor, the neighbor, which is R1, uses IP address 10.1.13.1.

State: While many possible states exist, for the details discussed in this chapter, FULL is the correct and fully working state in this case.

Neighbor ID: This is the router ID of the neighbor.

Next, Example 8-5 shows the contents of the LSDB on Router R3. Interestingly, when OSPF is working correctly in an internetwork with a single-area design, all the routers will have the same LSDB contents. So, the **show ip ospf database** command in Example 8-5 should list the same exact information, no matter on which of the four routers it is issued.

Example 8-5 OSPF Database on Router R3 from Figure 8-2

R3# show ip	ospf database			
	OSPF Router with I	D (10.1.13.3)	(Process II	D 1)
	Router Link St	ates (Area 0)		
Link ID	ADV Router	Age	Seq#	Checksum Link count
1.1.1.1	1.1.1.1	498	0x80000006	0x002294 6
2.2.2.2	2.2.2.2	497	0x80000004	0x00E8C6 5
10.1.13.3	10.1.13.3	450	0x80000003	0x001043 4
10.1.24.4	10.1.24.4	451	0x80000003	0x009D7E 4
	Net Link State	s (Area 0)		
Link ID	ADV Router	Age	Seq#	Checksum
10.1.3.4	10.1.24.4	451	0x80000001	0x0045F8
10.1.3.130	10.1.24.4	451	0x80000001	0x00546B

For the purposes of this book, do not be concerned about the specifics in the output of this command. However, for perspective, note that the LSDB should list one "Router Link State" (Type 1 Router LSA) for each of the routers in the same area. In this design, all four routers are in the same area, so there are four highlighted Type 1 LSAs listed.

Next, Example 8-6 shows R3's IPv4 routing table with the show ip route command. Note that it lists connected routes as well as OSPF routes. Take a moment to look back at Figure 8-2, and look for the subnets that are not locally connected to R3. Then look for those routes in the output in Example 8-5.

Example 8-6 IPv4 Routes Added by OSPF on Router R3 from Figure 8-2

```
R3# show ip route
Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP
      D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
      N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2
! Legend lines omitted for brevity
      10.0.0.0/8 is variably subnetted, 11 subnets, 2 masks
         10.1.1.0/25 [110/65] via 10.1.13.1, 00:13:28, Serial0/0/0
         10.1.1.128/25 [110/65] via 10.1.13.1, 00:13:28, Serial0/0/0
         10.1.2.0/25 [110/66] via 10.1.3.130, 00:12:41, GigabitEthernet0/0.342
                     [110/66] via 10.1.3.4, 00:12:41, GigabitEthernet0/0.341
С
         10.1.3.0/25 is directly connected, GigabitEthernet0/0.341
         10.1.3.1/32 is directly connected, GigabitEthernet0/0.341
         10.1.3.128/25 is directly connected, GigabitEthernet0/0.342
С
         10.1.3.129/32 is directly connected, GigabitEthernet0/0.342
L
0
         10.1.12.0/25 [110/128] via 10.1.13.1, 00:13:28, Serial0/0/0
С
         10.1.13.0/25 is directly connected, Serial0/0/0
Τ.
         10.1.13.3/32 is directly connected, Serial0/0/0
0
         10.1.24.0/25
           [110/65] via 10.1.3.130, 00:12:41, GigabitEthernet0/0.342
           [110/65] via 10.1.3.4, 00:12:41, GigabitEthernet0/0.341
```

First, take a look at the bigger ideas confirmed by this output. The code of "O" on the left identifies a route as being learned by OSPF. The output lists five such IP routes. From Figure 8-2, five subnets exist that are not connected subnets off Router R3. Looking for a quick count of OSPF routes, versus nonconnected routes in the diagram, gives a quick check of whether OSPF learned all routes.

Next, take a look at the first route (to subnet 10.1.1.0/25). It lists the subnet ID and mask, identifying the subnet. It also lists two numbers in brackets. The first, 110, is the administrative distance of the route. All the OSPF routes in this example use the default of 110. The second number, 65, is the OSPF metric for this route.

Additionally, the **show ip protocols** command is also popular as a quick look at how any routing protocol works. This command lists a group of messages for each IPv4 routing protocol running on a router. Example 8-7 shows a sample, this time taken from Router R3.

Example 8-7 The show ip protocols Command on R3

```
R3# show ip protocols
*** IP Routing is NSF aware ***
Routing Protocol is "ospf 1"
 Outgoing update filter list for all interfaces is not set
 Incoming update filter list for all interfaces is not set
Router ID 10.1.13.3
 Number of areas in this router is 1. 1 normal 0 stub 0 nssa
 Maximum path: 4
 Routing for Networks:
   10.0.0.0 0.255.255.255 area 0
Routing Information Sources:
    Gateway
                   Distance
                                 Last Update
    1.1.1.1
                        110
                                 06:26:17
    2.2.2.2
                        110
                                 06:25:30
    10.1.24.4
                        110
                                  06:25:30
 Distance: (default is 110)
```

The output shows several interesting facts. The first highlighted line repeats the parameters on the router ospf 1 global configuration command. The second highlighted item points out R3's router ID, as discussed further in the next section. The third highlighted line repeats more configuration, listing the parameters of the network 10.0.0.0 0.255.255.255 area 0 OSPF subcommand. Finally, the last highlighted item in the example acts as a heading before a list of known OSPF routers, by router ID.

Configuring the OSPF Router ID

While OSPF has many other optional features, most enterprise networks that use OSPF choose to configure each router's OSPF router ID. OSPF-speaking routers must have a router ID (RID) for proper operation. By default, routers will choose an interface IP address to use as the RID. However, many network engineers prefer to choose each router's router ID, so command output from commands like **show ip ospf neighbor** lists more recognizable router IDs.

To choose its RID, a Cisco router uses the following process when the router reloads and brings up the OSPF process. Note that when one of these steps identifies the RID, the process stops.

- 1. If the router-id rid OSPF subcommand is configured, this value is used as the RID.
- If any loopback interfaces have an IP address configured, and the interface has an interface status of up, the router picks the highest numeric IP address among these loopback interfaces.
- The router picks the highest numeric IP address from all other interfaces whose interface status code (first status code) is up. (In other words, an interface in up/down state will be included by OSPF when choosing its router ID.)

The first and third criteria should make some sense right away: the RID is either configured or is taken from a working interface's IP address. However, this book has not yet explained the concept of a *loopback interface*, as mentioned in Step 2.

A loopback interface is a virtual interface that can be configured with the interface loopback interface-number command, where interface-number is an integer. Loopback interfaces are always in an "up and up" state unless administratively placed in a shutdown state. For example, a simple configuration of the command interface loopback 0, followed by ip address 2.2.2.2 255.255.25.0, would create a loopback interface and assign it an IP address. Because loopback interfaces do not

rely on any hardware, these interfaces can be up/up whenever IOS is running, making them good interfaces on which to base an OSPF RID.

Example 8-8 shows the configuration that existed in Routers R1 and R2 before the creation of the show command output in Examples 8-4, 8-5, and 8-6. R1 set its router ID using the direct method, while R2 used a loopback IP address.

Example 8-8 *OSPF Router ID Configuration Examples*

```
! R1 Configuration first
router ospf 1
router-id 1.1.1.1
network 10.1.0.0 0.0.255.255 area 0
! R2 Configuration next
interface Loopback2
ip address 2.2.2.2 255.255.255.255
```

Each router chooses its OSPF RID when OSPF is initialized, which happens when the router boots or when a CLI user stops and restarts the OSPF process (with the clear ip ospf process command). So, if OSPF comes up, and later the configuration changes in a way that would impact the OSPF RID, OSPF does not change the RID immediately. Instead, IOS waits until the next time the OSPF process is restarted.

Example 8-9 shows the output of the **show ip ospf** command on R1, after the configuration of Example 8-8 was made, and after the router was reloaded, which made the OSPF router ID change.

Example 8-9 Confirming the Current OSPF Router ID

```
R1# show ip ospf
Routing Process "ospf 1" with ID 1.1.1.1
 lines omitted for brevity
```

OSPF Passive Interfaces

Once OSPF has been enabled on an interface, the router tries to discover neighboring OSPF routers and form a neighbor relationship. To do so, the router sends OSPF Hello messages on a regular time interval (called the Hello Interval). The router also listens for incoming Hello messages from potential neighbors.

Sometimes, a router does not need to form neighbor relationships with neighbors on an interface. Often, no other routers exist on a particular link, so the router has no need to keep sending those repetitive OSPF Hello messages.

When a router does not need to discover neighbors off some interface, the engineer has a couple of configuration options. First, by doing nothing, the router keeps sending the messages, wasting some small bit of CPU cycles and effort. Alternately, the engineer can configure the interface as an OSPF passive interface, telling the router to do the following:

- Quit sending OSPF Hellos on the interface.
- Ignore received Hellos on the interface.
- Do not form neighbor relationships over the interface.

By making an interface passive, OSPF does not form neighbor relationships over the interface, but it does still advertise about the subnet connected to that interface. That is, the OSPF configuration enables OSPF on the interface (using the network router subcommand), and then makes the interface passive (using the **passive-interface** router subcommand).

To configure an interface as passive, two options exist. First, you can add the following command to the configuration of the OSPF process, in router configuration mode:

passive-interface type number

Alternately, the configuration can change the default setting so that all interfaces are passive by default, and then add a no passive-interface command for all interfaces that need to not be passive:

passive-interface default

no passive interface type number

For example, in the sample internetwork in Figure 8-2 (used in the single-area configuration examples), Router R1, at the bottom left of the figure, has a LAN interface configured for VLAN trunking. The only router connected to both VLANs is Router R1, so R1 will never discover an OSPF neighbor on these subnets. Example 8-10 shows two alternative configurations to make the two LAN subinterfaces passive to OSPF.

Example 8-10 Configuring Passive Interfaces on R1 and R2 from Figure 8-2

```
! First, make each subinterface passive directly
router ospf 1
passive-interface GigabitEthernet0/0.11
passive-interface GigabitEthernet0/0.12
! Or, change the default to passive, and make the other interfaces
! not be passive
router ospf 1
passive-interface default
no passive-interface serial0/0/0
no passive-interface serial0/0/1
```

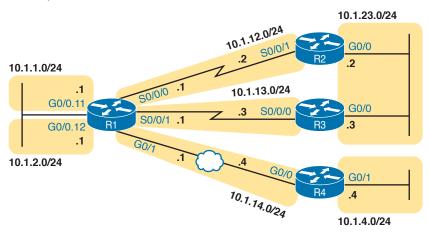
In real internetworks, the choice of configuration style reduces to which option requires the least number of commands. For example, a router with 20 interfaces, 18 of which are passive to OSPF, has far fewer configuration commands when using the passive-interface default command to change the default to passive. If only two of those 20 interfaces need to be passive, use the default setting, in which all interfaces are not passive, to keep the configuration shorter.

Interestingly, OSPF makes it a bit of a challenge to use show commands to find whether or not an interface is passive. The show running-config command lists the configuration directly, but if you cannot get into enable mode to use this command, note these two facts:

The show ip ospf interface brief command lists all interfaces on which OSPF is enabled, including passive interfaces.

The **show ip ospf interface** command lists a single line that mentions that the interface is passive.

Example 8-11 shows these two commands on Router R1, with the configuration shown in the top of Example 8-10. Note that subinterfaces G0/0.11 and G0/0.12 both show up in the output of show ip ospf interface brief.


Example 8-11 Displaying Passive Interfaces

R1# show ip ospf interface brief						
Interface	PID	Area	IP Address/Mask	Cost	State	Nbrs F
Gi0/0.12	1	0	10.1.1.129/25	1	DR	0/0
Gi0/0.11	1	0	10.1.1.1/25	1	DR	0/0
Se0/0/0	1	0	10.1.12.1/25	64	P2P	0/0
Se0/0/1	1	0	10.1.13.1/25	64	P2P	0/0
R1# show ip	ospf :	interface g0	0/0.11			
GigabitEther	net0/	0.11 is up,	line protocol is up			
Internet A	ddres	s 10.1.1.1/2	25, Area O, Attached via	Networ	k Stat	ement
Process ID	1, R	outer ID 10.	.1.1.129, Network Type B	ROADCAS	T, Cos	st: 1
Topology-M	ITID	Cost Di	isabled Shutdown	Topolo	gy Nar	ne
0 1 no no Base						
Transmit D	elay :	is 1 sec, St	ate DR, Priority 1			
Designated	Route	er (ID) 10.1	1.1.129, Interface addre	ss 10.1	.1.1	
No backup	desig	nated router	on this network			
Timer inte	rvals	configured,	Hello 10, Dead 40, Wai	t 40, R	etrans	smit 5
oob-resy	nc ti	meout 40				
No Hello	s (Pa	ssive interf	face)			
! Lines omit	ted fo	or brevity				

Implementing Multiarea OSPFv2

Configuring the routers in a multiarea design is almost just like configuring OSPFv2 for a single area. The only difference is that the configuration places some interfaces on each ABR in different areas. The differences come in the verification and operation of OSPFv2.

This second major section of the chapter provides a second set of configurations to contrast multiarea configuration with single-area configuration. This new scenario shows the configuration for the routers in the multiarea OSPF design based on Figures 8-3 and 8-4. Figure 8-3 shows the internetwork topology and subnet IDs, and Figure 8-4 shows the area design. Note that Figure 8-3 lists the last octet of each router's IPv4 address near each interface, rather than the entire IPv4 address, to reduce clutter.

Figure 8-3 Subnets for a Multiarea OSPF Configuration Example

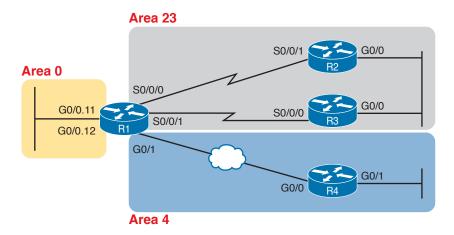


Figure 8-4 Area Design for an Example Multiarea OSPF Configuration

Take a moment to think about the area design shown in Figure 8-4, and look for the ABRs. Only R1 connects to the backbone area at all. The other three routers are internal routers in a single area. So, as it turns out, three of the four routers have single-area configurations, with all interfaces in the same area.

Note that the examples in this section use a variety of configuration options just so you can see those options. The options include different ways to set the OSPF RID, different wildcard masks on OSPF network commands, and the use of passive interfaces where no other OSPF routers should exist off an interface.

Single-Area Configurations

Example 8-12 begins the configuration example by showing the OSPF and IP address configuration on R2. Note that R2 acts as an internal router in area 23, meaning that the configuration will refer to only one area (23). The configuration sets R2's RID to 2.2.2.2 directly with the router-id command. And, because R2 should find neighbors on both its two interfaces, neither can reasonably be made passive, so R2's configuration lists no passive interfaces.

Example 8-12 OSPF Configuration on R2, Placing Two Interfaces into Area 23

```
interface GigabitEthernet0/0
ip address 10.1.23.2 255.255.255.0
interface serial 0/0/1
 ip address 10.1.12.2 255.255.255.0
router ospf 1
network 10.0.0.0 0.255.255.255 area 23
router-id 2.2.2.2
```

Example 8-13 continues reviewing a few commands with the configuration for both R3 and R4. R3 puts both its interfaces into area 23, per its network command, sets its RID to 3.3.3.3 by using a loopback interface, and, like R2, cannot make either of its interfaces passive. The R4 configuration is somewhat different, with both interfaces placed into area 4, setting its RID based on a nonloopback interface (G0/0, for OSPF RID 10.1.14.4), and making R4's G0/1 interface passive, because no other OSPF routers sit on that link. (Note that the choice to use one method over another to set the OSPF RID is simply to show the variety of configuration options.)

Example 8-13 OSPF Single-Area Configuration on R3 and R4

```
! First, on R3
interface GigabitEthernet0/0
ip address 10.1.23.3 255.255.255.0
interface serial 0/0/0
ip address 10.1.13.3 255.255.255.0
interface loopback 0
ip address 3.3.3.3 255.255.255.0
router ospf 1
network 10.0.0.0 0.255.255.255 area 23
! Next. on R4
interface GigabitEthernet0/0
description R4 will use this interface for its OSPF RID
ip address 10.1.14.4 255.255.255.0
interface GigabitEthernet0/1
ip address 10.1.4.4 255.255.255.0
router ospf 1
network 10.0.0.0 0.255.255.255 area 4
 passive-interface GigabitEthernet0/1
```

Multiarea Configuration

The only router that has a multiarea config is an ABR, by virtue of the configuration referring to more than one area. In this design (as shown in Figure 8-4), only Router R1 acts as an ABR, with interfaces in three different areas. Example 8-14 shows R1's OSPF configuration. Note that the configuration does not state anything about R1 being an ABR; instead, it uses multiple network commands, some placing interfaces into area 0, some into area 23, and some into area 4.

Example 8-14 OSPF Multiarea Configuration on Router R1

```
interface GigabitEthernet0/0.11
 encapsulation dot1q 11
 ip address 10.1.1.1 255.255.255.0
interface GigabitEthernet0/0.12
 encapsulation dot1q 12
 ip address 10.1.2.1 255.255.255.0
```

```
interface GigabitEthernet0/1
ip address 10.1.14.1 255.255.255.0
interface serial 0/0/0
ip address 10.1.12.1 255.255.255.0
interface serial 0/0/1
ip address 10.1.13.1 255.255.255.0
router ospf 1
network 10.1.1.1 0.0.0.0 area 0
network 10.1.2.1 0.0.0.0 area 0
network 10.1.12.1 0.0.0.0 area 23
network 10.1.13.1 0.0.0.0 area 23
network 10.1.14.1 0.0.0.0 area 4
router-id 1.1.1.1
passive-interface GigabitEthernet0/0.11
passive-interface GigabitEthernet0/0.12
```

Focus on the highlighted **network** commands in the example. All five commands happen to use a wildcard mask of 0.0.0.0, so that each command requires a specific match of the listed IP address. If you compare these **network** commands to the various interfaces on Router R1, you can see that the configuration enables OSPF, for area 0, on subinterfaces G0/0.11 and G0/0.12, area 23 for the two serial interfaces, and area 4 for R1's G0/1 interface.

NOTE Many networks make a habit of using a 0.0.0.0 wildcard mask on OSPF **network** commands, requiring an exact match of each interface IP address, as shown in Example 8-14. This style of configuration makes it more obvious exactly which interfaces match which network command.

Finally, note that R1's configuration also sets its RID directly and makes its two LAN subinterfaces passive.

So, what's the big difference between single-area and multiarea OSPF configuration? Practically nothing. The only difference is that with multiarea, the ABR's network commands list different areas.

Verifying the Multiarea Configuration

The next few pages look at how to verify a few of the new OSPF features introduced in this chapter. Figure 8-5 summarizes the most important OSPF verification commands for reference.

This section looks at the following topics:

- Verifying the ABR interfaces are in the correct (multiple) areas
- Finding which router is DR and BDR on multiaccess links
- A brief look at the LSDB
- Displaying IPv4 routes

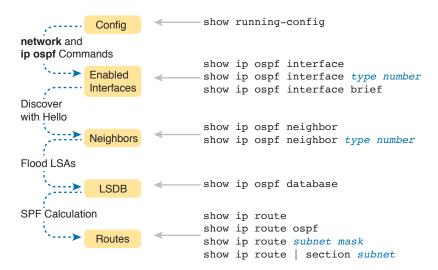


Figure 8-5 OSPF Verification Commands

Verifying the Correct Areas on Each Interface on an ABR

The easiest place to make a configuration oversight with a multiarea configuration is to place an interface into the wrong OSPF area. Several commands mention the OSPF area. The **show ip protocols** command basically relists the OSPF **network** configuration commands, which indirectly identify the interfaces and areas. Also, the **show ip ospf interface** and **show ip ospf interface brief** commands directly show the area configured for an interface; Example 8-15 shows an example of the briefer version of these commands.

Example 8-15 Listing the OSPF-Enabled Interfaces and the Matching OSPF Areas

R1# show ip	ospf i	nterface brief				
Interface	PID	Area	IP Address/Mask	Cost	State	Nbrs F/C
Gi0/0.12	1	0	10.1.2.1/24	1	DR	0/0
Gi0/0.11	1	0	10.1.1.1/24	1	DR	0/0
Gi0/1	1	4	10.1.14.1/24	1	BDR	1/1
Se0/0/1	1	23	10.1.13.1/24	64	P2P	1/1
Se0/0/0	1	23	10.1.12.1/24	64	P2P	1/1

In the output, to correlate the areas, just look at the interface in the first column and the area in the third column. Also, for this example, double-check this information with Figures 8-3 and 8-4 to confirm that the configuration matches the design.

Verifying Which Router Is DR and BDR

Several **show** commands identify the DR and BDR in some way, as well. In fact, the **show ip ospf interface brief** command output, just listed in Example 8-15, lists the local router's state, showing that R1 is DR on two subinterfaces and BDR on its G0/1 interface.

Example 8-16 shows two other examples that identify the DR and BDR, but with a twist. The **show ip ospf interface** command lists detailed output about OSPF settings, per interface. Those details include the RID and interface address of the DR and BDR. At the same time, the **show ip ospf neighbor** command lists shorthand information about the neighbor's DR or BDR role as well; this command does not say anything about the local router's role.

Example 8-16 Discovering the DR and BDR on the R1–R4 Ethernet (from R4)

```
R4# show ip ospf interface gigabitEthernet 0/0
GigabitEthernet0/0 is up, line protocol is up
 Internet Address 10.1.14.4/24, Area 4, Attached via Network Statement
 Process ID 1, Router ID 10.1.14.4, Network Type BROADCAST, Cost: 1
 Topology-MTID Cost Disabled Shutdown Topology Name
                  1
                            no
                                      no
                                                    Base
 Transmit Delay is 1 sec, State DR, Priority 1
Designated Router (ID) 10.1.14.4, Interface address 10.1.14.4
Backup Designated router (ID) 1.1.1.1, Interface address 10.1.14.1
! Lines omitted for brevity
R4# show ip ospf neighbor
Neighbor ID Pri State
                                   Dead Time Address
                                                              Interface
1.1.1.1
               1 FULL/BDR
                                   00:00:33
                                               10.1.14.1
                                                              GigabitEthernet0/0
```

First, focus on the highlighted lines from the show ip ospf interface command output. It lists the DR as RID 10.1.14.4, which is R4. It also lists the BDR as 1.1.1.1, which is R1.

The end of the example shows the **show ip ospf neighbor** command on R4, listing R4's single neighbor, with Neighbor RID 1.1.1.1 (R1). The command lists R4's concept of its neighbor state with neighbor 1.1.1.1 (R1), with the current state listed as FULL/BDR. The FULL state means that R4 has fully exchanged its LSDB with R1. BDR means that the neighbor (R1) is acting as the BDR, implying that R4 (the only other router on this link) is acting as the DR.

Example 8-16 also shows the results of an DR/BDR election, with the router using the higher RID winning the election. The rules work like this:

- When a link comes up, if two (or more) routers on the subnet send and hear each other's Hello messages, they elect a DR and BDR, with the higher OSPF RID becoming DR, and the second highest RID becoming the BDR.
- Once the election has completed, new routers entering the subnet do not take over the DR or BDR role, even if they have better (higher) RID.

In this case, Routers R1 and R4, on the same Ethernet, heard each other's Hellos. R1, with RID 1.1.1.1, has a lower-value RID than R4's 10.1.14.1. As a result, R4 (10.1.14.1) won the DR election.

Verifying Interarea OSPF Routes

Finally, all this OSPF theory and all the **show** commands do not matter if the routers do not learn IPv4 routes. To verify the routes, Example 8-17 shows R4's IPv4 routing table.

Example 8-17 Verifying OSPF Routes on Router R4

```
R4# show ip route
Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP
      D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
      N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
      E1 - OSPF external type 1, E2 - OSPF external type 2
      i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
       ia - IS-IS inter area, * - candidate default, U - per-user static route
      o - ODR, P - periodic downloaded static route, H - NHRP, l - LISP
       + - replicated route, % - next hop override
```

```
10.0.0.0/8 is variably subnetted, 9 subnets, 2 masks
O IA
         10.1.1.0/24 [110/2] via 10.1.14.1, 11:04:43, GigabitEthernet0/0
O IA
         10.1.2.0/24 [110/2] via 10.1.14.1, 11:04:43, GigabitEthernet0/0
C
         10.1.4.0/24 is directly connected, GigabitEthernet0/1
         10.1.4.4/32 is directly connected, GigabitEthernet0/1
O IA
         10.1.12.0/24 [110/65] via 10.1.14.1, 11:04:43, GigabitEthernet0/0
         10.1.13.0/24 [110/65] via 10.1.14.1, 11:04:43, GigabitEthernet0/0
O IA
C
         10.1.14.0/24 is directly connected, GigabitEthernet0/0
         10.1.14.4/32 is directly connected, GigabitEthernet0/0
O IA
         10.1.23.0/24 [110/66] via 10.1.14.1, 11:04:43, GigabitEthernet0/0
```

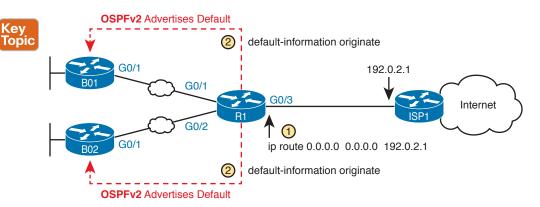
This example shows a couple of new codes that are particularly interesting for OSPF. As usual, a single character on the left identifies the source of the route, with O meaning OSPF. In addition, IOS notes any interarea routes with an IA code as well. (The example does not list any intra-area OSPF routes, but these routes would simply omit the IA code; earlier Example 8-6 lists some intraarea OSPF routes.) Also, note that R4 has routes to all seven subnets in the topology used in this example: two connected routes and five interarea OSPF routes.

Additional OSPF Features

So far this chapter has focused on the most common OSPF features using the traditional configuration using the OSPF network command. This final of three major sections discusses some very popular but optional OSPFv2 configuration features, as listed here in their order of appearance:

- Default routes
- Metrics
- Load balancing
- OSPF interface configuration

OSPF Default Routes


In some cases, routers benefit from using a default route. The ICND1 Cert Guide showed many of the details, with the configuration of static default routes in Chapter 18, learning default routes with DHCP in Chapter 20, and advertising default routes with RIP in Chapter 19. For those exact same reasons, networks that happen to use OSPFv2 can use OSPF to advertise default routes.

The most classic case for using a routing protocol to advertise a default route has to do with an enterprise's connection to the Internet. As a strategy, the enterprise engineer uses these design goals:

- All routers learn specific routes for subnets inside the company; a default route is not needed when forwarding packets to these destinations.
- One router connects to the Internet, and it has a default route that points toward the Internet.
- All routers should dynamically learn a default route, used for all traffic going to the Internet, so that all packets destined to locations in the Internet go to the one router connected to the Internet.

Figure 8-6 shows the idea of how OSPF advertises the default route, with the specific OSPF configuration. In this case, a company connects to an ISP with its Router R1. That router has a static default route (destination 0.0.0.0, mask 0.0.0.0) with a next-hop address of the ISP router. Then, the use of the OSPF default-information originate command (Step 2) makes the router advertise a default route using OSPF to the remote routers (B1 and B2).

NOTE The example in Figure 8-6 uses a static default route, but it could have used a default route as learned from the ISP with DHCP, as well as learning a default route with External BGP (eBGP), as discussed in Chapter 12, "Implementing External BGP."

Figure 8-6 Using OSPF to Create and Flood a Default Route

Figure 8-7 shows the default routes that result from OSPF's advertisements in Figure 8-6. On the far left, the branch routers all have OSPF-learned default routes, pointing to R1. R1 itself also needs a default route, pointing to the ISP router, so that R1 can forward all Internet-bound traffic to the ISP.

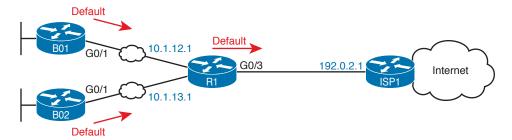


Figure 8-7 Default Routes Resulting from the default-information originate Command

Finally, this feature gives the engineer control over when the router originates this default route. First, R1 needs a default route, either defined as a static default route, learned from the ISP with DHCP, or learned from the ISP with a routing protocol like eBGP. The **default-information** originate command then tells R1 to advertise a default route when its own default route is working, and to advertise the default route as down when its own default route fails.

NOTE Interestingly, the **default-information originate always** router subcommand tells the router to always advertise the default route, no matter whether the router's default route is working or not.

Example 8-18 shows details of the default route on both R1 and branch router B01. Beginning with Router R1, in this case, Router R1 used DHCP to learn its IP address on its G0/3 interface from the ISP. R1 then creates a static default route with the ISP router's IP address of 192.0.2.1 as the next-hop address, as highlighted in the output of the show ip route static command output.

Example 8-18 Default Routes on Routers R1 and B01

```
! The next command is from Router R1. Note the static code for the default route
R1# show ip route static
Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP
! Rest of the legend omitted for brevity
Gateway of last resort is 192.0.2.1 to network 0.0.0.0
      0.0.0.0/0 [254/0] via 192.0.2.1
! The next command is from router B01; notice the External route code for the default
BO1# show ip route ospf
Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
      N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2
! Rest of the legend omitted for brevity
Gateway of last resort is 10.1.12.1 to network 0.0.0.0
     0.0.0.0/0 [110/1] via 10.1.12.1, 00:20:51, GigabitEthernet0/1
      10.0.0.0/8 is variably subnetted, 6 subnets, 2 masks
0
         10.1.3.0/24 [110/3] via 10.1.12.1, 00:20:51, GigabitEthernet0/1
0
         10.1.13.0/24 [110/2] via 10.1.12.1, 00:20:51, GigabitEthernet0/1
```

Keeping the focus on the command on Router R1, note that R1 indeed has a default route, that is, a route to 0.0.0.0/0. The "Gateway of last resort," which refers to the default route currently used by the router, points to next-hop IP address 192.0.2.1, which is the ISP router's IP address. (Refer back to Figure 8-7 for the particulars.)

Next look to the bottom half of the example, and router BO1's OSPF-learned default route. BO1 lists a route for 0.0.0.0/0 as well. The next-hop router in this case is 10.1.12.1, which is Router R1's IP address on the WAN link. The code on the far left is O*E2, meaning: an OSPF-learned route, which is a default route, and is specifically an external OSPF route. Finally, BO1's gateway of last resort setting uses that one OSPF-learned default route, with next-hop router 10.1.12.1.

OSPF Metrics (Cost)

Earlier, the Chapter 7 section "Calculating the Best Routes with SPF" discussed how SPF calculates the metric for each route, choosing the route with the best metric for each destination subnet. OSPF routers can influence that choice by changing the OSPF interface cost on any and all interfaces.

Cisco routers allow two different ways to change the OSPF interface cost. The one straightforward way is to set the cost directly, with an interface subcommand: ip ospf cost x. The other method is to let IOS choose default costs, based on a formula, but to change the inputs to the formula. This second method requires a little more thought and care and is the focus of this next topic.

Setting the Cost Based on Interface Bandwidth

The default OSPF cost values can actually cause a little confusion, for a couple of reasons. So, to get through some of the potential confusion, this section begins with some examples.

First, IOS uses the following formula to choose an interface's OSPF cost. IOS puts the interface's bandwidth in the denominator, and a settable OSPF value called the reference bandwidth in the numerator:

Reference_bandwidth / Interface_bandwidth

With this formula, the following sequence of logic happens:

- A higher interface bandwidth—that is, a faster bandwidth—results in a lower number in the calculation.
- A lower number in the calculation gives the interface a lower cost.
- An interface with a lower cost is more likely to be used by OSPF when calculating the best

Now for some examples. Assume a default reference bandwidth, set to 100 Mbps, which is the same as 100,000 Kbps. (The upcoming examples will use a unit of Kbps just to avoid math with fractions.) Assume defaults for interface bandwidth on serial, Ethernet, and Fast Ethernet interfaces, as shown in the output of the **show interfaces** command, respectively, of 1544 Kbps, 10,000 Kbps (meaning 10 Mbps), and 100,000 Kbps (meaning 100 Mbps). Table 8-2 shows the results of how IOS calculates the OSPF cost for some interface examples.

Table 8-2 OSPF Cost Calculation Examples with Default Bandwidth Settings

Interface	Interface Default Bandwidth (Kbps)	Formula (Kbps)	OSPF Cost
Serial	1544 Kbps	100,000/1544	64
Ethernet	10,000 Kbps	100,000/10,000	10
Fast Ethernet	100,000 Kbps	100,000/100,000	1

Example 8-19 shows the cost settings on R1's OSPF interfaces, all based on default OSPF (reference bandwidth) and default interface bandwidth settings.

Example 8-19 Confirming OSPF Interface Costs

R1# show ip	ospf :	interface brief	·			
Interface	PID	Area	IP Address/Mask	Cost	State	e Nbrs F/C
Gi0/0.12	1	0	10.1.2.1/24	1	DR	0/0
Gi0/0.11	1	0	10.1.1.1/24	1	DR	0/0
Gi0/1	1	4	10.1.14.1/24	1	BDR	1/1
Se0/0/1	1	23	10.1.13.1/24	64	P2P	1/1
Se0/0/0	1	23	10.1.12.1/24	64	P2P	1/1

To change the OSPF cost on these interfaces, the engineer simply needs to use the bandwidth speed interface subcommand to set the bandwidth on an interface. The interface bandwidth does not change the Layer 1 transmission speed at all; instead, it is used for other purposes, including routing protocol metric calculations. For instance, if you add the bandwidth 10000 command to a serial interface, with a default reference bandwidth, the serial interface's OSPF cost could be calculated as 100,000 / 10,000 = 10.

Note that if the calculation of the default metric results in a fraction, OSPF rounds down to the nearest integer. For instance, the example shows the cost for interface S0/0/0 as 64. The calculation used the default serial interface bandwidth of 1.544 Mbps, with reference bandwidth 100 (Mbps), with the 100 / 1.544 calculation resulting in 64.7668394. OSPF rounds down to 64.

The Need for a Higher Reference Bandwidth

This default calculation works nicely as long as the fastest link in the network runs at 100 Mbps. The default reference bandwidth is set to 100, meaning 100 Mbps, the equivalent of 100,000 Kbps. As a result, with default settings, faster router interfaces end up with the same OSPF cost, as shown in Table 8-3, because the lowest allowed OSPF cost is 1.

Interface	Interface Default Bandwidth (Kbps)	Formula (Kbps)	OSPF Cost
Fast Ethernet	100,000 Kbps	100,000/100,000	1
Gigabit Ethernet	1,000,000 Kbps	100,000/1,000,000	1
10 Gigabit Ethernet	10,000,000 Kbps	100,000/10,000,000	1
100 Gigabit Ethernet	100,000,000 Kbps	100,000/100,000,000	1

To avoid this issue, and change the default cost calculation, you can change the reference bandwidth with the **auto-cost reference-bandwidth** *speed* OSPF mode subcommand. This command sets a value in a unit of megabits per second (Mbps). To avoid the issue shown in Table 8-3, set the reference bandwidth value to match the fastest link speed in the network. For instance, **auto-cost reference-bandwidth 10000** accommodates links up to 10 Gbps in speed.

NOTE Cisco recommends making the OSPF reference bandwidth setting the same on all OSPF routers in an enterprise network.

For convenient study, the following list summarizes the rules for how a router sets its OSPF interface costs:

- **1.** Set the cost explicitly, using the **ip ospf cost** x interface subcommand, to a value between 1 and 65,535, inclusive.
- **2.** Change the interface bandwidth with the **bandwidth** *speed* command, with *speed* being a number in kilobits per second (Kbps).
- **3.** Change the reference bandwidth, using router OSPF subcommand **auto-cost reference-bandwidth** *ref-bw*, with a unit of megabits per second (Mbps).

OSPF Load Balancing

When a router uses SPF to calculate the metric for each of several routes to reach one subnet, one route may have the lowest metric, so OSPF puts that route in the routing table. However, when the metrics tie for multiple routes to the same subnet, the router can put multiple equal-cost routes in the routing table (the default is four different routes) based on the setting of the **maximum-paths** *number* router subcommand. For example, if an internetwork has six possible paths between some parts of the network, and the engineer wants all routes to be used, the routers can be configured with the **maximum-paths** 6 subcommand under **router ospf**.

The more challenging concept relates to how the routers use those multiple routes. A router could load balance the packets on a per-packet basis. For example, if the router has three equal-cost OSPF routes for the same subnet in the routing table, the router could send the one packet over the first route, the next packet over the second route, the next packet over the third route, and then start over with the first route for the next packet. Alternatively, the load balancing could be on a per-destination IP address basis.

Note that the default setting of **maximum-paths** varies by router platform.

OSPFv2 Interface Configuration

The newer interface-style OSPF configuration works mostly like the old style, for almost all features, with one important exception. The interface configuration enables OSPF directly on the interface with the ip ospf interface subcommand, while the traditional OSPFv2 configuration enables OSPFv2 on an interface, but indirectly, using the network command in OSPF configuration mode. The rest of the OSPF features discussed throughout this chapter are not changed by the use of OSPFv2 interface configuration.

Basically, instead of matching interfaces with indirect logic using **network** commands, you directly enable OSPFv2 on interfaces by configuring an interface subcommand on each interface.

OSPFv2 Interface Configuration Example

To show how OSPF interface configuration works, this example basically repeats the example shown earlier in the book using the traditional OSPFv2 configuration with **network** commands. So, before looking at the OSPFv2 interface configuration, take a moment to look back at Figures 8-3 and 8-4, along with Examples 8-12, 8-13, and 8-14. Once reviewed, for easier reference, Figure 8-8 repeats Figure 8-4 for reference in the upcoming interface configuration examples.

To convert from the old-style configuration in Examples 8-12, 8-13, and 8-14, simply do the following:

- Step 1. Use the no network network-id area area-id subcommands in OSPF configuration mode to remove the network commands.
- Step 2. Add one ip ospf process-id area area-id command in interface configuration mode under each interface on which OSPF should operate, with the correct OSPF process (process-id) and the correct OSPF area number.

For example, Example 8-12 had a single **network** command that enabled OSPF on two interfaces on Router R2, putting both in area 23. Example 8-20 shows the replacement newer style of configuration.

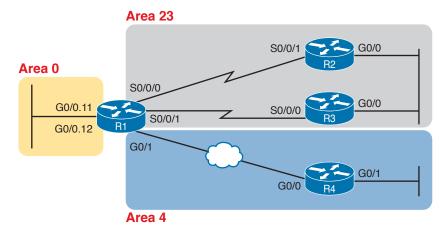


Figure 8-8 Area Design Used in the Upcoming OSPF Example

Example 8-20 New-Style Configuration on Router R2

```
interface GigabitEthernet0/0
ip address 10.1.23.2 255.255.255.0
ip ospf 1 area 23
```

```
interface serial 0/0/1
 ip address 10.1.12.2 255.255.255.0
ip ospf 1 area 23
router ospf 1
router-id 2.2.2.2
! Notice - no network commands here!
```

Verifying OSPFv2 Interface Configuration

OSPF operates the same way whether you use the new style or old style of configuration. The OSPF area design works the same, neighbor relationships form the same way, routers negotiate to become the DR and BDR the same way, and so on. However, you can see a few small differences in command output when using the newer OSPFv2 configuration if you look closely.

The show ip protocols command relists most of the routing protocol configuration, just in slightly different format, as shown in Example 8-21. With the newer-style configuration, the output lists the phrase "Interfaces Configured Explicitly," with the list of interfaces configured with the new ip ospf process-id area area-id commands, as highlighted in the example. With the old configuration, the output lists the contents of all the network commands, just leaving out the "network" word itself. Note that in the next two examples, R2 has been reconfigured to use OSPF interface configuration as shown in the previous example (Example 8-20), while Router R3 still uses the older-style network commands per earlier configuration Example 8-13.

Example 8-21 Differences in show ip protocols Output: Old- and New-Style OSPFv2 Configuration

```
R2# show ip protocols
*** IP Routing is NSF aware ***
Routing Protocol is "ospf 1"
 Outgoing update filter list for all interfaces is not set
 Incoming update filter list for all interfaces is not set
 Router ID 2.2.2.2
 Number of areas in this router is 1. 1 normal 0 stub 0 nssa
 Maximum path: 4
 Routing for Networks:
 Routing on Interfaces Configured Explicitly (Area 23):
Serial0/0/1
GigabitEthernet0/0
 Routing Information Sources:
                Distance
                              Last Update
                 110
                               00:04:59
   3.3.3.3
   1.1.1.1
                                00:04:43
 Distance: (default is 110)
! Below, showing only the part that differs on R3:
R3# show ip protocols
! ... beginning lines omitted for brevity
Routing for Networks:
   10.0.0.0 0.255.255.255 area 23
! ... ending line omitted for brevity
```

Basically, the **show ip protocols** command output differs depending on the style of configuration, either relisting the interfaces when using interface configuration or relisting the network commands if using **network** commands.

Next, the show ip ospf interface [interface] command lists details about OSPF settings for the interface(s) on which OSPF is enabled. The output also makes a subtle reference to whether that interface was enabled for OSPF with the old or new configuration style. As seen in Example 8-22, R2's new-style interface configuration results in the highlighted text, "Attached via Interface Enable," whereas R3's old-style configuration lists "Attached via Network Statement."

Example 8-22 Differences in show ip ospf interface Output with OSPFv2 Interface Configuration

```
R2# show ip ospf interface g0/0
GigabitEthernet0/0 is up, line protocol is up
  Internet Address 10.1.23.2/24, Area 23, Attached via Interface Enable
 Process ID 1, Router ID 22.2.2.2, Network Type BROADCAST, Cost: 1
 Topology-MTID
                  Cost
                         Disabled
                                      Shutdown
                                                     Topology Name
       0
                  1
                           no
                                                      Base
                                       no
 Enabled by interface config, including secondary ip addresses
 Transmit Delay is 1 sec, State DR, Priority 1
 Designated Router (ID) 2.2.2.2, Interface address 10.1.23.2
 Backup Designated router (ID) 3.3.3.3, Interface address 10.1.23.3
! Showing only the part that differs on R3:
R3# show ip ospf interface g0/0
GigabitEthernet0/0 is up, line protocol is up
 Internet Address 10.1.23.3/24, Area 23, Attached via Network Statement
! ... ending line omitted for brevity
```

Note that the briefer version of this command, the show ip ospf interface brief command, does not change whether the configuration uses traditional network commands or the alternative interface configuration with the **ip ospf** interface subcommand.

Review Activities

Chapter Summary

- The OSPF **network** command is used to match the IP addresses that are configured on the interfaces. Those that match are inserted into the OSPF process.
- The OSPF network command uses wildcard masks to control which bits in an octet are matched.
- The **show ip ospf neighbor** command can be used to find information about any OSPF neighborships, including the interface, the state, the neighbor's address, and the neighbor's router ID.
- To select a router ID for OSPF, a router goes through a process. When a router ID has been found, the process stops. The process is any value configured with the **router-id** command; the highest configured IPv4 address of any enabled loopback interface; and the highest configured IPv4 address of any physically up (up/up or up/down) physical interface.
- An OSPF interface configured as passive will quit sending OSPF Hello messages, will ignore any received Hello messages, and will not form any neighborships.
- The only OSPF router configured into multiple areas is an Area Border Router (ABR).
- The **show ip ospf interface** [type number | **brief**] command can be used to display which interfaces are enabled into the OSPF process.
- The **show ip ospf neighbor** [*type number*] command can be used to display any OSPF neighborships.
- The **show ip ospf database** command can be used to display the OSPF LSDB.
- The **show ip route** [**ospf** | *subnet mask*] command can be used to display OSPF routes in the current routing table.
- The **show ip protocols** and **show ip ospf interface** [**brief**] commands can be used to display which areas are configured on a device.
- The OSPF **default-information originate** command is used along with a configured static default route to advertise a default route into OSPF.
- OSPF uses three rules to set interface costs: setting the cost explicitly with the **ip ospf cost** cost command, changing the interface bandwidth with the **bandwidth** bandwidth command, or changing the reference bandwidth with the **auto-cost reference-bandwidth** reference-bandwidth command.
- The output of the **show ip protocols** and **show ip ospf interface** commands will differ depending on whether OSPF was configured with the old (**network**) or new (interface commands) configuration style.

Review Questions

- **1.** Which of the following **network** commands, following the command **router ospf 1**, tells this router to start using OSPF on interfaces whose IP addresses are 10.1.1.1, 10.1.100.1, and 10.1.120.1?
 - A. network 10.0.0.0 255.0.0.0 area 0
 - B. network 10.0.0.0 0.255.255.255 area 0
 - C. network 10.0.0.1 0.0.0.255 area 0
 - **D.** network 10.0.0.1 0.0.255.255 area 0

- 2. Which of the following network commands, following the command router ospf 1, tells this router to start using OSPF on interfaces whose IP addresses are 10.1.1.1, 10.1.100.1, and 10.1.120.1?
 - A. network 10.1.0.0 0.0.255.255 area 0
 - network 10.0.0.0 0.255.255.0 area 0
 - C. network 10.1.1.0 0.x.1x.0 area 0
 - **D.** network 10.1.1.0 255.0.0.0 area 0
 - network 10.0.0.0 255.0.0.0 area 0
- Which of the following commands list the OSPF neighbors off interface serial 0/0? (Choose two answers.)
 - A. show ip ospf neighbor
 - show ip ospf interface brief
 - **C.** show ip neighbor
 - D. show ip interface
 - show ip ospf neighbor serial 0/0
- Routers R1, R2, and R3 are internal routers in areas 1, 2, and 3, respectively. Router R4 is an ABR connected to the backbone area (0) and to areas 1, 2, and 3. Which of the following answers describes the configuration on Router R4, which is different from the other three routers, that makes it an ABR?
 - **A.** The **abr enable** router subcommand.
 - The **network** router subcommands refer to a single nonbackbone area.
 - **C.** The **network** router subcommands refer to multiple areas, including the backbone.
 - **D.** The router has an interface in area 0, whereas an OSPF neighbor's interface sits in a different area.
- 5. An engineer connects to Router R1 and issues a show ip ospf neighbor command. The status of neighbor 2.2.2.2 lists FULL/BDR. What does the BDR mean?
 - **A.** R1 is an Area Border Router.
 - **B.** R1 is a backup designated router.
 - **C.** Router 2.2.2.2 is an Area Border Router.
 - **D.** Router 2.2.2.2 is a backup designated router.
- **6.** An engineer migrates from a more traditional OSPFv2 configuration that uses **network** commands in OSPF configuration mode to instead use OSPFv2 interface configuration. Which of the following commands configures the area number assigned to an interface in this new configuration?
 - The area command in interface configuration mode
 - The **ip ospf** command in interface configuration mode
 - **C.** The **router ospf** command in interface configuration mode
 - **D.** The **network** command in interface configuration mode
- 7. Which of the following configuration settings on a router does not influence which IPv4 route a router chooses to add to its IPv4 routing table when using OSPFv2?
 - auto-cost reference-bandwidth
 - B. delay
 - C. bandwidth
 - D. ip ospf cost

Chapter Review

One key to doing well on the exams is to perform repetitive spaced review sessions. Review this chapter's material using either the tools in the book, DVD, or interactive tools for the same material found on the book's companion website. Refer to the "Your Study Plan" element for more details. Table 8-4 outlines the key review elements and where you can find them. To better track your study progress, record when you completed these activities in the second column.

Table 8-4 Chapter Review Tracking

Review Element	Review Date(s)	Resource Used:
Review key topics		Book, DVD/website
Review key terms		Book, DVD/website
Answer chapter review questions		Book, PCPT
Do labs		Blog
Review Config Checklists		Book, DVD/website
Review command tables		Book

Review All the Key Topics

Table 8-5 Key Topics for Chapter 8

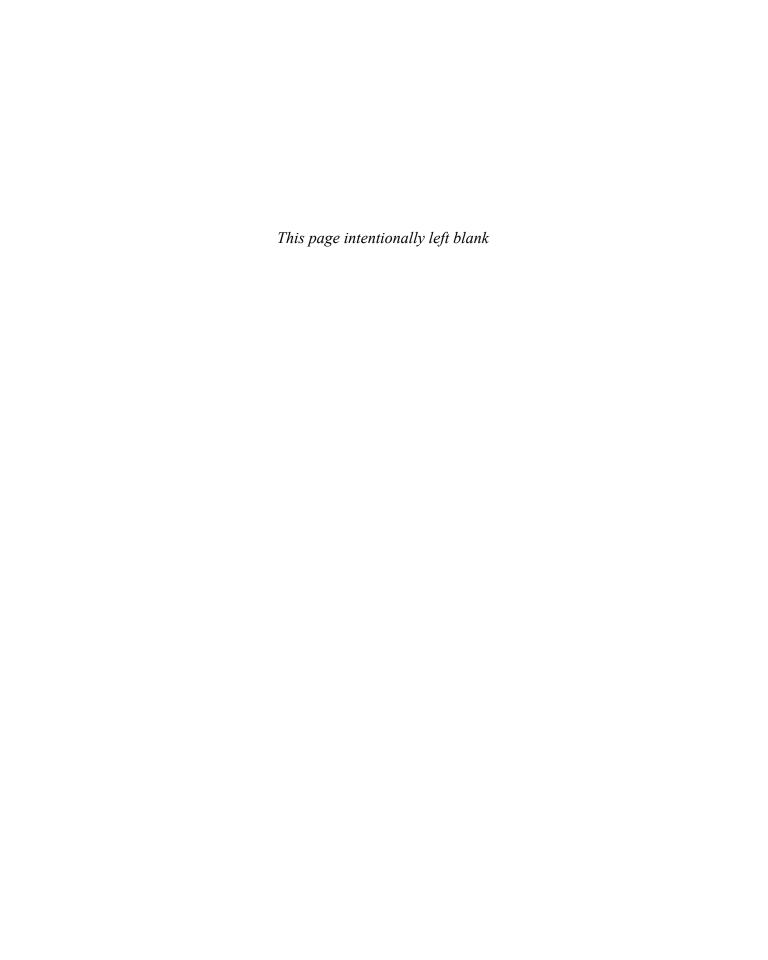
Key Topic Element	Description	Page Number
List	Example OSPF wildcard masks and their meaning	187
Example 8-4	Example of the show ip ospf neighbor command	189
List	Rules for setting the router ID	191
List	Actions IOS takes when an OSPF interface is passive	192
Example 8-14	Example of a multiarea OSPFv2 configuration	196
Figure 8-5	Popular OSPF show commands and their general purposes	198
Example 8-15	Example of the show ip ospf interface brief showing interfaces in multiple areas	198
Figure 8-6	Actions taken by the OSPF default-information originate command	201
List	Rules for setting OSPF interface cost	204
Example 8-22	Differences in show ip ospf interface output with OSPF interface configuration	207

Key Terms You Should Know

reference bandwidth, interface bandwidth, maximum paths

Command References

Tables 8-6 and 8-7 list configuration and verification commands used in this chapter. As an easy review exercise, cover the left column in a table, read the right column, and try to recall the command without looking. Then repeat the exercise, covering the right column, and try to recall what the command does.


 Table 8-6
 Chapter 8 Configuration Command Reference

Command	Description
router ospf process-id	Enters OSPF configuration mode for the listed process.
network ip-address wildcard- mask area area-id	Router subcommand that enables OSPF on interfaces matching the address/wildcard combination and sets the OSPF area.
ip ospf process-id area area- number	Interface subcommand to enable OSPF on the interface and to assign the interface to a specific OSPF area.
ip ospf cost interface-cost	Interface subcommand that sets the OSPF cost associated with the interface.
bandwidth bandwidth	Interface subcommand that directly sets the interface bandwidth (Kbps).
auto-cost reference-bandwidth number	Router subcommand that tells OSPF the numerator in the Reference_bandwidth / Interface_bandwidth formula used to calculate the OSPF cost based on the interface bandwidth.
router-id id	OSPF command that statically sets the router ID.
interface loopback number	Global command to create a loopback interface and to navigate to interface configuration mode for that interface.
maximum-paths number-of- paths	Router subcommand that defines the maximum number of equal- cost routes that can be added to the routing table.
passive-interface type number	Router subcommand that makes the interface passive to OSPF, meaning that the OSPF process will not form neighbor relationships with neighbors reachable on that interface.
passive-interface default	OSPF subcommand that changes the OSPF default for interfaces to be passive instead of active (not passive).
no passive-interface type number	OSPF subcommand that tells OSPF to be active (not passive) on that interface or subinterface.
default-information originate [always]	OSPF subcommand to tell OSPF to create and advertise an OSPF default route, as long as the router has some default route (or to always advertise a default, if the always option is configured).

Table 8-7 Chapter 8 EXEC Command Reference

Command	Description
show ip ospf	Lists information about the OSPF process running on the router, including the OSPF router ID, areas to which the router connects, and the number of interfaces in each area.
show ip ospf interface brief	Lists the interfaces on which the OSPF protocol is enabled (based on the network commands), including passive interfaces.
show ip ospf interface [type number]	Lists a long section of settings, status, and counters for OSPF operation on all interfaces, or on the listed interface, including the Hello and Dead Timers.
show ip protocols	Shows routing protocol parameters and current timer values.
show ip ospf neighbor [type number]	Lists brief output about neighbors, identified by neighbor router ID, including current state, with one line per neighbor; optionally, limits the output to neighbors on the listed interface.

Command	Description
show ip ospf neighbor neighbor-ID	Lists the same output as the show ip ospf neighbor detail command, but only for the listed neighbor (by neighbor RID).
show ip ospf database	Lists a summary of the LSAs in the database, with one line of output per LSA. It is organized by LSA type (first type 1, then type 2, and so on).
show ip route	Lists all IPv4 routes.
show ip route ospf	Lists routes in the routing table learned by OSPF.
show ip route ip-address mask	Shows a detailed description of the route for the listed subnet/mask.
clear ip ospf process	Resets the OSPF process, resetting all neighbor relationships and also causing the process to make a choice of OSPF RID.

Index

590-591

Symbols access Internet, 369 cable Internet, 371 2-way state (neighbor relationships), 175, 594 DSLs (digital subscriber lines), 370-371 3G wireless, 372 fiber, 372 4G wireless, 372 WANs, 369 802.1D STP, 51, 54 wireless WANs, 371-372 802.1Q, 16 IPv6 restrictions, 650 headers, 473-474 public cloud services trunking. See ROAS Internet, 707-709 802.1w RSTP private WANs, 709-711 defined, 51 VPNs, 709 port roles, 53 securing with IEEE 802.1x, 137-138 port states, 54 access-class command, 461 802.11 headers, 474 access control lists. See ACLs Access Control Server (ACS), 139 А access interfaces, 20, 105-106 access layer switches, 147-148 aaa authentication login default access links command, 141 MetroE, 348 aaa new-model command, 140 MPLS, 358 **AAA** servers access-list command, 421-423, 433, authentication 437-439, 461 configuration, 140-141 building ACLs with, 428-429 login authentication rules, 141-142 examples and logic explanations, 440-441 login process, 139 extended numbered ACL configuration TACACS+/RADIUS protocols, commands, 441 139-140 keywords configuring for 802.1x, 137 any, 423-424 defining, 141 deny, 424 enabling, 140 log, 427 username/passwords, verifying, 138 permit, 421, 424 aaS (as a Service), 705 tcp, 438 ABR (Area Border Router), 179, 590 upd, 438 interface OSPF areas, verifying, 198 reverse engineering from ACL to address OSPFv2 multiarea configuration, range, 429-430 196-197 **ACI (Application Centric** OSPFv3 multiarea configuration, Infrastructure), 734-735

ACLs (access control lists), 553	numbered ACLs, 448-449
ACL Analysis tool, 738-739	overview, 417
classification, 471	QoS tools, compared, 469
comparison of ACL types, 419	SNMP security, 664
extended numbered ACLs	standard numbered ACLs
configuration, 441-444	access-list command, 428-429
matching protocol, source IP, and	command syntax, 421
destination IP, 437-438	configuration examples, 424-427
matching TCP and UDP port numbers, 438-441	list logic, 419-421
overview, 437	matching any/all addresses, 423-424
	matching exact IP address, 421
GRE tunnel issues, 387-388	matching subset of address, 421-423
HSRP packets, blocking, 531 implementation considerations, 449-450	overview, 419
IPv4, 633	reverse engineering from ACL to address range, 429-430
IPv6, 632-633	troubleshooting, 427-428
access-list commands, building, 644	verification, 427-428
blocking, 647	wildcard masks, 421-423
capabilities, 635-636	troubleshooting, 450
extended, 640-643	ACL behavior in network, 450-451
filtering ICMPv6 NDP messages, 645-648	ACL interactions with router-generated packets, 455-457
filtering policies, 634	commands, 451-452
ICMPv6 message filtering, 635	common syntax mistakes, 453-454
implicit filtering ICMPv6 NDP	inbound ACL filters routing protocol
messages, 648-649	packets, 454-455
IPv4 ACL, compared, 633	reversed source/destination IP address,
IPv6 access restrictions, 650	452-453
limitations, 636-637	ACS (Access Control Server), 139
logging, 636	active HSRP routers, 527
management control, 649-650	address blocks. See prefixes
prefix lengths, 636	addresses
problems, 580	families, 585
router originated packets, 637	global unicast, 563
standard, configuring, 637-640	IPv4, 186
testing, 643	IPv6
tunneled traffic matching, 636	assigning to hosts, 565-567
location and direction, 417-418	connectivity, verifying, 569-572
matching packets, 418	multicast, 647
named ACLs	router configuration, 568
configuration, 445-446	static route configuration, 568-569
editing, 446-448	unicast, 563-565
overview, 444-445	

link, 294-295 link-local, 564	APIC EM (APIC Enterprise Module), 735-737
MAC, 43	controller, 738
public cloud assignment services, 717-718	Path Trace ACL Analysis tool, 738-739
source/destination, 384	Path Trace app, 738
unique local unicast, 563	Application Centric Infrastructure (ACI), 734-735
adjacent neighbors, 175, 598	Application Policy Infrastructure
administrative distance, 168	Controller (APIC), 735
administratively shutdown interfaces, 43	application signatures, 472
ADSL (asymmetric DSL), 370	application-specific integrated circuit
advertising	(ASIC), 728
BGP routes, 287-288	architectures (SDN), 732
eBPG enterprise public prefixes, 291-292 subnets to ISPs, 300-301	APIC Enterprise Module (APIC-EM), 735-737
AF (Assured Forwarding), 475-476 agents (SNMP), 661	Application Centric Infrastructure (ACI). 734-735
Get/Set messages, 662	comparisons, 737
MIB, 663	Open SDN, 732-733
NMS polling, 661	Open SDN Controller (OSC), 734
notifications, 662-663	OpenDaylight (ODL), 733-734
algorithms	OpenFlow, 732
Dijkstra SPF, 170	Area Border Router. See ABR
DUAL (Diffusing Update Algorithm),	area design (OSPF), 179
229-230, 613	ABR, 179, 198
IGP routing protocol algorithm, 165-166	areas, 178-179
SPF (Shortest Path First), 170, 176-177	backbone areas, 179
STA (spanning-tree algorithm), 42	multiarea on ABR configuration, 591
all IP addresses, matching, 423-424	super, 361
alternate ports, 53-54, 83	backbone routers, 179
Amazon Web Services (AWS), 705	benefits, 180
American Registry for Internet	interarea routes, 179
Numbers (ARIN), 165	internal routers, 179
analyzers (network), 682-683	intra-area routes, 179
answering exam questions, 753-755	mismatches, finding, 276-277
anti-replay (Internet VPNs), 373	MPLS VPNs, 361-362
any keyword, 423	network size, 178
any/all IP addresses, matching, 423-424	problems, 177, 268
APIs (application programming	single-area, 177
interfaces), 730-731	SPF workload, reducing, 179
APIC (Application Policy Infrastructure	three-area, 178
Controller), 735	ARIN (American Registry for Internet
	Numbers), 165

AS (autonomous system), 164-165, 288	В
as a Service (-aaS), 705	
ASAv (virtual ASA firewall), 715	backbone areas, 179
ASIC (application-specific integrated circuit), 728	multiarea on ABR configuration, 591 super, 361
ASNs (AS numbers), 165	backbone routers, 179
BGP, 288	backup DRs (BDRs), 174, 198-199
EIGRP, 235	backup port role (RSTP), 55
for IPv6, 615	backup ports, 53, 83
neighbors, 223, 274	bandwidth
Assured Forwarding (AF), 475-476	EIGRP
asymmetric DSL (ADSL), 370	for IPv6 routes, 616-617
attacks	metrics, 224-227, 251
DHCP-based, 143-144	routes, tuning, 246
types, 142	interfaces
auth keyword (snmp-server group	defaults, 203
command), 672	higher, 204
authentication	OSPF costs based on, 202-203
802.1x, 137	least-bandwidth, 224
AAA servers	managing, 465
configuration examples, 140-141	MetroE, 355
login authentication rules, 141-142	
login process, 139	reference, 203-204
TACACS+/RADIUS protocols,	bandwidth command, 203, 211, 258, 343
139-140	EIGRP, 235, 614
EIGRP neighbors, 222, 273	for IPv6, 630
Internet VPNs, 373	metrics, 224, 251
PPP, 325-326	OSPFv3 interface, 609
PPP CHAP, 337-338	batch traffic, 467
PPP PAP, 337-338	BDRs (backup DRs), 174, 198-199
SNMPv3, 665, 672-673	Bellman-Ford protocols. See DV
authentication ppp pap command, 328	protocols
authenticators, switches as, 137	best path selection (BGP), 289-290
auto-cost reference-bandwidth command, 211, 609	BGP (Border Gateway Protocol), 165, 286
autonomous system (AS), 164-165, 288	AS, 288
auto-summary command, 253, 259	ASNs, 288
EIGRP, 235	best path selection, 289-290
	configuring, 293-294
EIGRP for IPv4, 614 autosummarization, 252	external. See eBGP
·	IGPs, compared, 287
classful network boundaries, 252-253	internal (iBGP), 288-289
discontiguous classful networks, 253-254	ISP default routes, learning, 303-304
AWS (Amazon Web Services), 705	

neighbors, 287	CAC (Call Admission Control) tools,
prefixes, 288 reachability, 287	carrier Ethernet, 348
route advertising, 287-288	Catalyst switches RSTP modes, 80-82
routing table analysis reports website, 287	Catalyst switches STP modes, 80-81
table entries, injecting, 298	CBWFQ (Class-Based Weighted Fair Queuing), 478
advertising subnets to ISPs, 300-301 classful network routes, 298-300	CCNA ICND2 200-105 Official Cert Guide Premium Edition eBook and
static discard routes, 301-303	Practice Test, 755
update messages, 287, 294	CCNA (ICND2) Config Labs website, 758
bgp commands, 295	
BIDs (bridge IDs) STP, 43	CCNA R&S practice exam, 753
root switch election, 44-45	CE (customer edge), 358 centralized control planes, 729
	CFN (Cisco Feature Navigator), 503
verification, 70 system ID extensions, 67	challenge messages, 325
binary-to-hexadecimal conversion, 767	channel-group command
binary wildcard masks, 423	(EtherChannels), 77, 89, 515
blocking state	incorrect options, troubleshooting, 98-100
interfaces, 41-43	Layer 3, troubleshooting, 511
RSTP ports, 84 Border Gateway Protocol. See BGP	channel service unit (CSU)/data service
BPDU (bridge protocol data unit), 43	unit (DSU), 316
BPDU Guard, 58	CHAP (Challenge Handshake Authentication Protocol)
configuring, 74	authentication, 325, 337-338
enabling/disabling, 75	configuring, 327
global settings, displaying, 76	verifying, 328
verifying, 75	chassis aggregation, 149
branch offices public cloud example,	benefits, 151
711-713	design, improving, 150
bridge IDs. See BIDs	distribution/core switches high
bridges. See switches	availability, 149-150
broadcast storms, 39-41	switch stacking, 149-151
burned-in MAC addresses, 43	CIR (committed information rate), 355, 481
C	Cisco
	Access Control Server (ACS), 139
cable Internet, 371 cabling	Application Centric Infrastructure (ACI), 734-735
DTE cables, 319	BPDU Guard, 58
leased-line WANs, 316-317	Catalyst switches RSTP modes, 80-82
stacking cables, 147	Catalyst switches STP modes, 80-81

DevNet, 737	Platform as a Service (PaaS), 706-707
Feature Navigator (CFN), 503	private, 703-704
Intercloud Fabric, 711	public, 704
nondisclosure agreement (NDA), 752	accessing with Internet, 707-709
Open SDN Controller (OSC), 734	accessing with private VPNs, 709
Prime management products website, 661	accessing with private WANs, 709-711
server hardware, 697	branch offices example, 711-713
Unified Communication Manager	DNS services, 716-717
(CUCM), 29	email services traffic flow, 712-713
virtual ASA firewall (ASAv), 715	intercloud exchanges, 710-711
Class-Based Weighted Fair Queuing (CBWFQ), 478	Internet connections, 713 private WAN connections, 713
Class of Service (CoS) field (802.1Q	VNFs, 714-716
header), 473	services, 702-703
Class Selector (CS), 476	
classful networks	Software as a Service (SaaS), 706
autosummarization at boundaries, 252-253	Cloud Services Routers (CSRs), 709 codecs, 467
discontiguous, 253-254	commands
routes, injecting, 298-300	aaa authentication login default, 141
classful routing protocols, 167, 252	aaa new-model, 140
classic mode (EIGRP configuration),	access-class, 461
237	access-list, 421-423, 433-439, 461
classification (QoS), 469	any keyword, 423-424
ACLs, 471	building ACLs with, 428-429
matching, 470	deny keyword, 424
with marking, 470	examples and logic explanations,
NBAR, 471-472	440-441
routers, 469-471	extended numbered ACL configuration
classless routing protocols, 167	commands, 441
clear ip ospf process command, 192, 212	log keyword, 427
clear-text passwords, 664	permit keyword, 421, 424
CLI skills, 757-758	reverse engineering from ACL to address range, 429-430
client VPNs, 375-376	tcp keyword, 438
clock rate commands, 332, 343	upd keyword, 438
clocking, 316	authentication ppp pap, 328
cloud computing	auto-cost reference-bandwidth, 211, 609
address assignment services, 717-718	auto-summary, 253, 259
cloud services catalogs, 703	EIGRP, 235
Cloud Services Routers (CSRs), 709	EIGRP for IPv4, 614
DHCP services, 718	bandwidth, 203, 211, 258, 343
Infrastructure as a Service (IaaS), 705	EIGRP, 235, 614
NTP, 718-719	EIGRP for IPv6, 630

EIGRP metrics, 224, 251	eigrp router-id, 235, 240
OSPFv3 interface, 609	EIGRP, 614
bgp, 295	EIGRP for IPv6, 630
channel-group (EtherChannels), 77, 89,	encapsulation, 343, 497
515	encapsulation dot1q, 515
incorrect options, troubleshooting,	encapsulation ppp, 327, 332, 393, 410
98-100	erase startup-config, 126
Layer 3, troubleshooting, 511	frequency, 693
clear ip ospf process, 192, 212	history buckets-kept 6, 693
clock rate, 332, 343	history enhanced, 680
command, 211	history enhanced interval, 693
configure terminal, 23	history filter all, 693
debug, 273	history lives-kept 1, 693
debug eigrp fsm, 259	hostname, 327
debug eigrp packets, 272, 285	icmp-echo, 693
debug ip ospf adj, 285	ifconfig, 537, 569, 583
mismatched OSPF areas, 276	interface, 20, 31, 515
OSPF neighbors, troubleshooting, 275	interface dialer, 410
debug ip ospf events, 285	interface loopback, 185, 211
debug ip ospf hello, 285	interface multilink, 343
Hello/dead timer mismatches, 279	interface multilink1, 332
OSPF neighbors, troubleshooting, 275	interface port-channel, 515
debug ip ospf packet, 285	interface range, 22
debug ipv6 ospf adj, 597	interface tunnel, 379, 410
debug ppp authentication, 337, 344	interface vlan, 515
debug ppp negotiation, 344	ip -6 neighbor show, 583
debug spanning-tree events, 72, 90	ip access-group, 426, 433, 441, 450, 461
default-information originate, 201, 211,	ip access-list, 445, 461
304, 593	ip access-list extended, 446
default-information originate always, 201	ip address, 538, 551-552
delay, 235, 258 <i>EIGRP</i> , 614	IP addresses on loopback interfaces, 185
EIGRP for IPv6, 630	<i>MLPPP</i> , 332
EIGRP metrics, 224, 251	subinterfaces, 497
	ip address negotiated, 394, 410
deny, 445-447, 461 extended IPv6 ACLs, 640	ipconfig, 537, 569, 583
IPv6 ACLs, 638	ip domain-lookup, 540-541
,	ip hello-interval eigrp, 235, 258, 284, 614
deny icmp any any, 647	ip helper-address, 542-543
description, 343	ip hold-time eigrp, 235, 258, 284
dialer pool, 393, 410	ip mtu, 281, 601
dns-server, 540	ip name-server, 540
	ip ospf, 211

ip ospf cost, 211	EIGRP for IPv6 compatibility, 614
ip ospf dead-interval, 284	OSPF single-area configuration,
ip ospf hello-interval, 284	187-188
ip route, 307	OSPFv2 interface configuration, 205
ip routing, 515	OSPFv2 multiarea configuration, 197
ip sla, 693	no auto-summary, 254
ip sla restart, 693	no ip access-group, 449
ip sla schedule, 678	no ip address, 510
ipv6 access-list, 644, 653	no ip domain-lookup, 541
ipv6 access-list deny, 644	no ip sla schedule 1, 678
ipv6 access-list permit, 644	no neighbor shutdown, 297
ipv6 address, 567, 583	no passive-interface, 211, 259
ipv6 dhcp relay destination, 583	no shutdown, 36, 343
ipv6 eigrp, 614, 630	EIGRP for IPv6, 630
ipv6 hello-interval eigrp, 630	EIGRP for IPv6 routing, 616
ipv6 hold-time eigrp, 630	Layer 1 leased-line WAN problems, 330
ipv6 mtu, 601	OSPF processes, 280
ipv6 ospf, 589, 609	ROAS subinterfaces, 499
ipv6 ospf cost, 609	no spanning-tree portfast bpduguard
ipv6 router eigrp, 614, 630	default, 89
ipv6 router ospf, 589, 609	no spanning-tree portfast default, 89
ipv6 traffic-filter, 639, 653	no switchport
ipv6 unicast routing, 567, 583	Layer 3 EtherChannels, 510
mac-address, 410	Layer 3 switches, 515
maximum-paths, 204	routed ports, 506
defined, 211, 258	passive-interface, 193, 211, 284
EIGRP, 235, 614	EIGRP, 239, 259
EIGRP for IPv6, 618, 630	OSPF interfaces as passive, configuring, 185
EIGRP load balancing, 249	OSPFv3, 589
OSPFv3, 592, 609	passive-interface default, 193, 259
monitor session, 684, 694	permit, 445-447, 461
mtu, 410	extended IPv6 ACLs, 640
name, 20, 36, 126	GRE tunnel ACLs, 387
ndp -an, 583	IPv6 ACLs, 638
neighbor, 307	permit gre, 410
neighbor shutdown, 297	permit icmp any any router-
netsh interface ipv6 show neighbors, 583	advertisement, 648
network	permit icmp any any router-solicitation,
BGP, 307	648
BGP table entries, injecting, 298-303 EIGRP, 235-237, 258	permit ipv6, 653
EIGRP for IPv4, 614	
J j	

ping, 455, 540-543, 583	show interfaces, 285, 344, 515, 538
IPv6 host connectivity, testing, 570	EIGRP neighbor requirements,
IPv6 routes, testing, 571, 583	verifying, 272
leased-line WANs, 335	MLPPP, 334
self-ping, 456-457	OSPF interfaces, troubleshooting, 270
ping6, 583	OSPF neighbors, troubleshooting, 275
IPv6 ACLs, 639	OSPFv3 interface bandwidth, 604
IPv6 connectivity, testing, 570	PPP CHAP status, 328
ppp authentication, 332, 343	PPP PAP, 329
ppp authentication chap, 327	routed ports, 507
ppp chap hostname, 410	show interfaces description, 285, 545
ppp chap password, 410	show interfaces dialer, 397, 410
ppp multilink, 332, 344	show interfaces PPP status, 327
ppp multilink group, 344	show interfaces status
ppp multilink group 1, 332	Layer 3 EtherChannels, 510
ppp pap sent-username, 328, 343	routed ports, 507
pppoe-client dial-pool-number, 393, 410	show interfaces switchport, 26-28, 31, 36, 106-108, 126
pppoe enable, 394, 410	show interfaces trunk, 26-28, 32, 36, 108
remark, 445, 461	show interfaces trained, 28 26, 32, 36, 160 show interfaces tunnel, 383, 410
router bgp, 294-295	show interfaces virtual-access, 410
router eigrp, 235, 258, 614	show interfaces virtual access
router-id, 211	configuration, 398
OSPFv3, 589, 609	show interfaces vlan, 515
RIDs, defining, 185	show ip access-list, 434, 447-449
router ospf, 185, 211	show ip access-lists, 425, 452, 461
router ospf 1, 186	show ip bgp, 308
sdm prefer, 503	show ip bgp summary, 296, 308
sdm prefer lanbase-routing, 515	show ip eigrp interfaces, 259, 284
show	EIGRP-enabled interfaces, 238-239,
IPv6 ACLs, 639	262
routing protocol-enabled interfaces, verifying, 262	EIGRP neighbor requirements, verifying, 272
STP status, 64	multilink interfaces, 333
show access-list, 446	show ip eigrp interfaces detail, 238, 259
show access-lists, 425, 434, 452, 461, 653	show ip eigrp neighbors, 259, 284
show arp, 541	neighbor status, displaying, 240
show controllers, 334	neighbor verification checks, 272
show controllers serial, 344	show ip eigrp topology, 259
show etherchannel, 90, 515	metrics, 248
show etherchannel summary, 100, 510	successor routes, 245
show etherchannel 1 summary, 78	topology table, 243
	show ip eigrp topology all-links, 247

show ip eigrp topology command, 246 IPv4 routes added by OSPF, 190 show ip interface, 426, 434, 451-452 routing tables, displaying, 515 show ip interface brief, 344 show ip route eigrp, 242, 259, 284 GRE tunnels, 382 show ip route ospf, 212, 285, 546 multilink interfaces, 333 show ip route static, 201 OSPF interfaces, troubleshooting, 270 show ip sla enhanced-history distribution-statistics, 694 show ip interfaces, 272 show ip sla history, 680, 694 show ip ospf, 211, 285 show ip sla statistics, 694 duplicate OSPF RIDs, 277 show ip sla summary, 694 OSPF neighbors, troubleshooting, 275 show ipv6 access-list, 653 show ip ospf database, 169, 189, 212 show ipv6 access-lists, 643 show ip ospf interface, 211, 285 show ipv6 eigrp interfaces, 620, 630 DRs/BDRs details, displaying, 198 show ipv6 eigrp interfaces detail, 630 Hello/dead timer mismatches, 279 show ipv6 eigrp neighbors, 630 OSPF areas for ABR interfaces, 198 show ipv6 eigrp topology, 631 OSPF neighbors, troubleshooting, 275 show ipv6 eigrp topology | section, 631 OSPFv2 interface configuration, 207 show ipv6 interface, 583, 653 passive interface, 193 show ipv6 neighbors, 583 show ip ospf interface brief, 193, 211, 284 IPv6 ACL ICMPv6 NDP message OSPF areas for ABR interfaces, 198 filtering, 646 OSPF-enabled interfaces, identifying, IPv6 IPv4 replacement, 572 262 show ipv6 ospf, 604, 610 OSPF neighbors, troubleshooting, 275 show ipv6 ospf database, 600, 610 OSPF status on interfaces, 268 show ipv6 ospf interface, 595-596, 610 OSPFv2 interface configuration, 207 show ipv6 ospf interface brief, 610 show ip ospf neighbor, 172, 211, 285 OSPFv3 interface costs, 604 DRs/BDRs details, displaying, 198 OSPFv3 interfaces, 595 neighbors, listing, 274 show ipv6 ospf neighbor, 599, 610 OSPF processes shutdown, 280 show ipv6 protocols, 583, 610 show ip ospf neighbor interface brief, 280 EIGRP for IPv6, 630 show ip protocols, 211, 259, 284 EIGRP for IPv6 interfaces, 620 EIGRP enabled interfaces, 239-240, OSPFv3 interfaces, 595 EIGRP neighbor requirements, show ipv6 route, 583, 610 verifying, 272 EIGRP for IPv6, 631 EIGRP neighbor status, displaying, 241 IPv6 router connectivity, 572 IPv4 routing protocols, 190 show ipv6 route eigrp, 631 OSPF configuration errors, 269-270 show ipv6 route ospf, 603, 610 OSPFv2 interface configuration, 206 show ipv6 route | section, 631 show ip route, 212, 259, 308, 546-548 show ipv6 routers, 583, 646 administrative distance, 168 show mac address-table, 106 dialer interface Layer 3 orientation, 400 show mac address-table dynamic, 103 EIGRP-learned routes, displaying, 242

show monitor detail, 687, 694

show monitor session, 687, 694	snmp-server, 666
show monitor session all, 686	snmp-server community, 693
show ppp all, 328-329, 344	snmp-server contact, 693
show ppp multilink, 334, 344	snmp-server enable traps, 693
show pppoe session, 399, 410	snmp-server group, 669-670
show running-config, 126, 424, 446-448	snmp-server host, 666, 674, 693
show snmp, 668, 694	snmp-server location, 693
show snmp community, 667, 694	snmp-server user, 671-672
show snmp contact, 694	spanning-tree, 89
show snmp group, 673, 694	spanning-tree bpduguard disable, 89
show snmp host, 667, 694	spanning-tree bpduguard enable, 68, 74,
show snmp location, 694	89
show snmp user, 673, 694	spanning-tree mode, 80, 89
show spanning-tree, 90	spanning-tree mode mst, 66
show spanning-tree bridge, 74	spanning-tree mode pvst, 66
show spanning-tree interface, 90	spanning-tree mode rapid-pvst, 66, 82
show spanning-tree interface detail, 75	spanning-tree pathcost method long, 48
show spanning-tree root, 70, 74	spanning-tree portfast, 68, 74, 89
show spanning-tree summary, 76, 90	spanning-tree portfast bpduguard, 89
show spanning-tree vlan, 90	spanning-tree portfast default, 75, 89
show spanning-tree vlan 10, 68-70	spanning-tree portfast disable, 75, 89
show spanning-tree vlan 10 bridge, 70	spanning-tree vlan, 67
show spanning-tree vlan 10 interface gigabitethernet0/2 state, 84	spanning-tree vlan 10 port-priority 112, 96
show standby, 525, 529, 535	speed, 545
show standby brief, 524, 535	standby, 523, 535
show tcp brief, 296	standby 1 preempt, 527
show tcp summary, 308	standby version, 528
show vlan, 36, 106, 134	standby version 1 2, 535
show vlan brief, 21-24, 106	switchport, 506, 515
show vlan id, 22, 106	switchport access vlan, 20, 23, 31, 36,
show vlan status, 126	105, 126
show vlans, 499, 515	switchport mode, 25, 36
show vtp password, 126, 134	switchport mode access, 20, 23, 31, 130
show vtp status, 24, 36, 123, 126, 134	switchport mode dynamic auto, 107
shutdown, 36, 343	switchport mode dynamic desirable, 27
EIGRP for IPv6, 630	switchport mode trunk, 24, 108, 496
EIGRP for IPv6 routing, 616	switchport nonegotiate, 28, 36, 108, 130
Layer 1 leased-line WAN problems, 336	switchport trunk allowed vlan, 36, 109
OSPF processes, 280	switchport trunk encapsulation, 25, 36
ROAS subinterfaces, 499	switchport trunk native vlan, 36, 110
shutdown vlan, 126, 134	switchport voice vlan, 30-31, 36, 126

traceroute, 543	ACLs (access control lists)
GRE tunnels, 384	extended numbered, 441-444
IPv6 host connectivity, testing, 570	named, 445-446
IPv6 network router problems,	numbered, 448-449
troubleshooting, 579	standard numbered ACLs, 424-427
IPv6 router connectivity, testing, 571	BGPs, 293
IPv6 routes, testing, 583	disabling eBGP neighbors, 297
traceroute6, 583	eBGP neighbor verification, 296-297
tracert, 583	eBGP neighbors using link addresses,
tunnel destination, 384-386, 409	294-295
tunnel mode gre ip, 382, 410	ISP default routes, learning, 303-304
tunnel mode gre multipoint, 382	table entries, injecting, 298-303
tunnel source, 384, 409	transporting messages with TCP, 294
undebug all, 285	update messages, 294
username, 327, 343	BPDU Guard, 74-75
variance, 258	DHCP snooping, 144-145
EIGRP, 235, 250, 614	EIGRP, 235
EIGRP for IPv6, 618, 630	ASNs, 235
verification, 68	checklist, 235
vlan, 20, 31, 36, 126	classful network numbers, 236
vlan 10, 115	classic versus named mode, 237
vlan 200, 128	sample internetwork, 235
vtp, 125	verification. See verifying, EIGRP configuration
vtp domain, 126, 133	. 0
vtp mode, 36, 126, 133	wildcard masks, 236-237
vtp mode off, 24, 126	EIGRP for IPv6, 613
vtp mode transparent, 24, 126	commands, 614
vtp password, 126, 133	example, 614-616
vtp pruning, 126, 134	load balancing, 617-618
vtp version, 133	route metrics, 616-617
committed information rate (CIR), 355,	timers, 618
481	EtherChannels, 76-79
communities (SNMP), 664	GRE tunnels, 380-382
Community-based SNMP Version 2 (SNMPv2c), 664	HDLC, 321-323
community strings (SNMP), 664	HSRP, 523-524, 529-530
confidentiality (Internet VPNs), 373	ICMP-Echo operations, 678
Config Checklist app, 758	IGPs, 293
configure terminal command, 23	interfaces as passive, 193
configuring	IPv6
AAA servers, 140-142	addressing on routers, 568
AAA servers for 802.1x, 137	extended ACLS, 640-642
1111 SCIVCIS 101 002.13, 13/	hosts, 565-567
	routing, 567

standard ACLs, 637-640	single-area OSPFv2, 186-187
static routes, 568-569	IPv4 addresses, 186
ISL, 497	matching with network command,
ISP routers, 395	187-188
Layer 3	multiarea configurations, 195-196
EtherChannels, 508-509	network command, 187
switch routed ports, 506-508	organization, 185
switching with SVIs, 501-502	passive interfaces, 192-193
local SPAN, 684-687	RIDs, 191-192
MLPPP, 332	verifying, 188-190
multiarea OSPFv2, 194-197	wildcard masks, 187-188
network commands, 197	SNMPv2
single-area configurations, 195-196	Get/Set messages, 665-666
subnets, 194	Trap/Inform messages, 666-667
verifying, 197-200	verifying, 667-669
OSPFv2 interfaces, 205-207	SNMPv3, 669
OSPFv3, 587	authentication, 672-673
default routes, 593	encryption, 672-673
load balancing, 592	groups, 669-671
multiarea example, 588	notifications, 674-675
multiarea on ABR, 590-591	requirements, 669
route selection metrics, setting, 592	summary, 675-676
single-area, 589-590	users, 672
overlapping VLSM subnets, 551-552	verifying, 673
PortFast, 74-75	STP, 65
PPP, 326-330	modes, 65-66
CHAP, 327	options, 68
PAP, 328-330	per-VLAN port costs, 68
PPPoE, 392	port costs, 71-72
ISP router configuration example, 395	PVST+, 66-67
Layer 1, 393	root election influence, 72-74
Layer 2, 393-394	system ID extensions, 67
summary, 394-395	topology changes, influencing, 48-49
verification, 396-401	verification commands, 68
RIDs (OSPF), 191-192	VLANs (virtual LANs), 20
ROAS, 496	data and voice VLANs, 30-32
native VLANs, 497-498	full VLAN configuration example,
subinterfaces, 496-497	20-23
troubleshooting, 500	shorter VLAN configuration example
verifying, 498-499	23-24
$JJ = \mathcal{O}_{I} + \mathcal{O}_{I} + \mathcal{O}_{I}$	trunking, 24-28

VTP	costs. See metrics
common rejections, troubleshooting, 128	counters
default VTP settings, 121	historical success/failure (IP SLAs), 679
example, 122	IP SLA, 679-680
new VTP configuration settings, 122	CP (control protocols), 324
planning, 121	CPE (customer premises equipment),
steps, 121	316
storing configuration, 125-126	CS (Class Selector), 476
transparent mode, 126	CS DSCP values, marking, 476
congestion	CSRs (Cloud Services Routers), 709
avoidance, 484-485	CSU/DSU (channel service unit/data
management, 477-479	service unit), 316-318
connections (public cloud access)	CUCM (Cisco Unified Communication Manager), 29
branch offices, 713	customer edge (CE), 358
Internet, 707-709	
private WANs, 709-711	D
VPNs, 709	
contiguous networks, 253	data
control planes	application traffic, 466-467
centralized, 729	EIGRP for IPv6 topology, 623-624
distributed, 729	integrity, 373
networking devices, 726-727	usage (MetroE), 354-356
control protocols (CP), 324	data centers (virtual)
controllers, 728	networking, 699
APIC-EM, 738	physical networks, 700
centralized control, 729	vendors, 699
Northbound Interfaces (NBIs), 730-732	workflow, 701-702
OpenDaylight SDN controller, 733	data circuit-terminating equipment
Southbound Interfaces (SBIs), 729-730	(DCE), 318
convergence	data plane
EIGRP, 227	EtherChannel impact on MAC tables,
DUAL process, 229-230	103-104
feasible successor routes, 247-248	networking devices, 725-726
successors, 228-229	STP impact on MAC tables, 102
routing protocols, 164	VLAN of incoming frames, 104-105
STP, 42, 98	data terminal equipment (DTE), 318
converting	databases
binary to hexadecimal, 767	LSDB
decimal to binary, 764-766	area design, 179
hexadecimal to binary, 767	best routes, finding, 170
core switches, 149-150	contents, displaying, 189
CoS (Class of Service) fields (802.1Q header), 473-474	exchanging between neighbors, 173-175

LSAs relationship, 169	delay command, 258
OSPFv3, 600-601	EIGRP, 235, 614
MIB, 661-663	EIGRP for IPv6, 630
OIDs, 663	EIGRP metrics, 224, 251
variable numbering/names, 663	delays
variables, monitoring, 662	EIGRP
views, 670	for IPv6 routes, 616-617
topology, 177	metrics, 224, 251
VLAN, 123-125	managing, 465
DCE (data circuit-terminating	delivery headers, 379
equipment), 318	deny command, 445-447, 461
Dead Interval timer, 174	extended IPv6 ACLs, 640
dead timers, 279-280	IPv6 ACLs, 638
debug command, 273	deny icmp any any command, 647
debug eigrp fsm command, 259	deny keyword, 418, 424
debug eigrp packets command, 272, 285	dependencies (SPAN), 684-685
debug ip ospf adj command, 285	description command, 343
mismatched OSPF areas, 276	design
OSPF neighbors, troubleshooting, 275	improving with chassis aggregation, 150
debug ip ospf events command, 285	Internet edge, 290
debug ip ospf hello command, 285	MetroE Layer 3, 352
Hello/dead timer mismatches, 279	E-LAN service, 353
OSPF neighbors, troubleshooting, 275	E-Line service, 352-353
debug ip ospf packet command, 285	E-Tree service, 353-354
debug ipv6 ospf adj command, 597	MetroE physical, 347-348
debug messages, 248	MPLS Layer 3, 358
debug ppp authentication command,	MPLS VPNs Layer 3, 360-363
337, 344	OSPF area, 179
debug ppp negotiation command, 344	ABR, 179
debug spanning-tree events command, 72, 90	areas, 178-179
decimal-to-binary conversion, 764, 766	backbone areas, 179
decimal wildcard masks, 421-423	backbone routers, 179
default-information originate always	benefits, 180
command, 201	interarea routes, 179
default-information originate command,	internal routers, 179
211, 304	intra-area routes, 179
OSPF default routes, 201	MPLS VPNs, 361-362
OSPFv3, 593	network size, 178
default routes, 593	problems, 177, 268
default VLANs, 20	single-area, 177
	SPF workload, reducing, 179
	three-area, 178
	OSPFv3 multiarea, 588

designated ports. See DPs	digital subscriber lines (DSLs), 370-371
designated routers. See DRs	Dijkstra SPF algorithm, 170
destination addresses, 384	direction (ACLs), 417-418
destination IP, matching, 437-438	disabling
destination ports (SPAN), 683	BGP neighbors, 297
devices, networking, 725	BPDU Guard, 75
control, centralizing, 729	DTP, 108
control plane, 726-727	EIGRP for IPv6 routing, 616
data plane, 725-726	PortFast, 75
management plane, 727	ports, 53
switch internal processing, 727-728	VLANs, 106
DevNet, 737	VLAN trunking, 130
DHCP (Dynamic Host Control	discard routes, 302
Protocol)	discarding state, 53
Binding Table, 145	discontiguous networks, 252-254
DHCP Relay, 542	discovery (EIGRP neighbors), 222
public cloud services, 718	displaying
snooping	BPDU Guard global settings, 76
configuration settings, 144	DRs/BDRs details, 198
DHCP-based attacks, 143-144	EIGRP
DHCP Binding Table, 145	enabled interfaces, 262
features, 142	IPv4 routing table, 241-242
ports as trusted, configuring, 144	neighbor status, 240-241
rate limiting, 145	topology table, 243-244
rules summary, 144	LSDB contents, 189
trusted/untrusted ports, 143-145	OSPF-enabled interfaces, 262
stateful, 576-577	passive interfaces, 193
troubleshooting, 542-543	PortFast global settings, 76
DHCP-based attacks, 143-144	TCP connections, 296
DHCPv6, 565-566	distance vector protocols. See DV
dialer interfaces	protocols
Layer 3 orientation, 400	distributed control planes, 729
PPPoE	distribution switches, chassis
configuration, 393	aggregation, 149-150
verifying, 397-398	DMVPN (Dynamic Multipoint VPN),
dialer pool command, 393, 410	389
Differentiated Services Code Point. See	DNS (Domain Name System)
DSCP	IPv6 network troubleshooting, 575-576
Diffusing Update Algorithm (DUAL), 229-230, 613	public cloud, 716-717 troubleshooting, 540-541
Digital Signal level 0 (DS0), 318	dns-server command, 540
Digital Signal level 1 (DS1), 318	down status (interfaces), 336
Digital Signal level 3 (DS1), 318	

DPs (designated ports), LAN segments, 42	E
choosing, 47, 96-98	E1, 318
problems, troubleshooting, 97	E3, 318
DRs (designated routers), 174	EAP (Extensible Authentication
backup (BDRs), 174	Protocol), 138
discovering, 198-199	EAPoL (EAP over LAN), 138
Ethernet links, 174-175	earplugs (exam), 750
DROthers routers, 175	eBGP (External BGP), 288-289
DS0 (Digital Signal level 0), 318	Internet edge, 290
DS1 (Digital Signal level 1), 318	design, 290
DS3 (Digital Signal level 3), 318	enterprise public prefixes, advertising,
DSCP (Differentiated Services Code	291-292
Point), 470	ISP default routes, learning, 292-293
fields (QoS marking), 474	neighbors
marking values, 475-476	configuring, 295
DSLs (digital subscriber lines), 370-371	disabling, 297
DSLAMs (DSL access multiplexers), 370	using link addresses, configuring, 294
DTE (data terminal equipment),	verifying, 296-297
318-319	Eclipse IDE, 707
DTP (Dynamic Trunking Protocol), 108	edge ports, 56
DUAL (Diffusing Update Algorithm), 229-230, 613	EF (Expedited Forwarding), 474
dual Internet edge design, 290	EF DSCP value marking, 475
dual stack	EF RFC (RFC 3246), 475
OSPFv2/OSPFv3, 585	EGP (exterior gateway protocol), 164,
OSPFv3 address families, 586	287
strategies, 568	EIGRP (Enhanced Interior Gateway Routing Protocol), 166
DV protocols, 216	as advanced DV protocol, 220-221
distance/vector information learned,	authentication, 273
216-217	autosummarization, 252
EIGRP as, 220-221	classful network boundaries, 252-253
route poisoning, 219-220	discontiguous classful networks, 253-254
split horizon, 219	benefits, 215-216
update messages, 217-219	configuration, 235
dynamic EtherChannels configuration,	ASNs, 235
79	checklist, 235
Dynamic Multipoint VPN (DMVPN),	classful network numbers, 236
389	classic versus named mode, 237
Dynamic Trunking Protocol (DTP), 108	sample internetwork, 235
	wildcard masks, 236-237
	www.wiwinds.cs, 200 201

convergence, 227	tuning with bandwidth changes, 246
DUAL process, 229-230	variance, 250-251
feasible successor routes, 247-248	successor routes, identifying, 244-245
successors, 228-229	topology
disadvantages, 216	database metrics, 248
feasible successor routes	exchange, 222
convergence, 247-248	table, displaying, 243-244
identifying, 245-247	variance, 250-251
goals, 287	verification, 237
interfaces	EIGRP enabled interfaces, finding,
configuration problems, 266-268	238-240
identifying, 262	IPv4 routing table, displaying, 241-242
OSPF interfaces, compared, 268	neighbor status, displaying, 240-241
troubleshooting, 263-268	EIGRP for IPv6
K-values, 273	configuration, 613
metrics, 224	commands, 614
bandwidth, 251	example, 614-616
calculation, 224	load balancing, 617-618
components, 248	route metrics, 616-617
delay settings, 251	timers, 618
EIGRP topology database, 248	DUAL, 613
example, 225-226	EIGRP for IPv4, compared, 612-613,
FD (feasible distance), 227-228	619
RD (reported distance), 227-228	FS, 613
route load balancing, 250	interfaces, 620-621
serial link bandwidth, 226-227	neighbors, 621-623
MPLS VPN challenges, 362-363	routes
neighbors, 222-223	ASNs, 615
discovery, 222	enabling/disabling, 616
requirements, 271-272	FS, 613
status, 221, 240-241	successors, 613
topology information, exchanging,	troubleshooting, 625-626
223-224	verifying, 624-625
troubleshooting example, 273-274	topology data, 623-624
verifying, 222, 272-273	eigrp router-id command, 235, 240, 614
OSPF, compared, 214	630
query/reply messages, 230	E-LAN (Ethernet LAN) service, 350-353
RIDs, configuring, 240	E-Line (Ethernet Line) service, 349-353
RIP metrics, compared, 166	email, 712-713
RIPv2/OSPFv2, compared, 221	
routes	enabling
choosing, 222	AAA servers, 140 BPDU Guard, 75
load balancing, 249-251	DI DO Guaru, 73

EIGRP, 235	Ethernet
EIGRP for IPv6 routing, 616	802.1Q headers, 473-474
IPv6 routing, 567	802.11 headers, 474
OSPF configuration mode, 186	access links, 348
PortFast, 75	carrier, 348
PPPoE, 394	IEEE standards, 348
VLANs, 106	links, 174-175
Encapsulated RSPAN (ERSPAN), 684	WANs, 709
encapsulation command, 343, 497	Ethernet LANs
encapsulation dot1q command, 515	service, 350-351
encapsulation ppp command, 327, 332, 393, 410	troubleshooting, 543-545 VLANs (virtual LANs)
encryption	configuration, 20-24
IPsec, 374-375	default VLANs, 20
keys, 374	IDs, 14
SNMPv3, 665, 672-673	IP telephony, 28-32
tunnel VPNs, 374	native VLANs, 16
End-to-End QoS Network Design, Second	overview, 13-14
Edition (Cisco Press), 468	routing between, 16-19
end-user traffic, measuring, 677	tagging, 15
endpoints, 735	trunking, 14-28
enhanced history, 680	Ethernet Line (E-Line) service, 349-350
Enhanced Interior Gateway Routing Protocol. See EIGRP	E-Tree (Ethernet LAN) service, 351-354
Enterprise QoS Solution Reference Network Design Guide, 468	ETSI (European Telco standards body), 716
enterprises, classification matching, 470	EUI-64 rules, 567-568
eq 21 parameters, 439	EVC (Ethernet Virtual Connection),
erase startup-config command, 126	350
ERSPAN (Encapsulated RSPAN), 684	exact IP address matching, 421
EtherChannels, 57	exam
configuring, 76-79	CLI skills, 757-758
Layer 3	earplugs, 750
configuring, 508-509	exam-day suggestions, 750-751
troubleshooting, 511	knowledge gaps, finding, 755-756
verifying, 510	practice exams, 753-755
MAC tables impact, predicting, 103-104	
	pre-exam suggestions, 750
troubleshooting, 98	pre-exam suggestions, 750 preparing for failure, 751-752
troubleshooting, 98 configuration checks before adding interfaces, 100-101	preparing for failure, 751-752 question types, 748
configuration checks before adding	preparing for failure, 751-752 question types, 748 ready to pass assessment, 759
configuration checks before adding interfaces, 100-101	preparing for failure, 751-752 question types, 748

time budget versus number of questions,	failover, 521-522
749	group numbers, 524
time-check method, 750	load balancing, 522-523
tutorial, 748-749	with/without preemption, 526-527
Expedited Forwarding (EF), 474	troubleshooting, 528-531
extended IPv6 ACLs	verifying, 525
configuring, 640-642	versions, 528
examples, 642-643	need for, 519
extended numbered IPv4 ACLs, 437	options, 520
configuration, 441-444	fiber Internet, 372
matching protocol, source IP, and	FIFO (first-in, first-out), 477
destination IP, 437-438	filtering
matching TCP and UDP port numbers, 438-441	ICMPv6 messages, 635, 645-648
Extensible Authentication Protocol	IPv6
(EAP), 138	ACL policies, 634
exterior gateway protocol (EGP), 164,	issues, 573
287	finding
External BGP. See eBGP	EIGRP
_	enabled interfaces, 238-240
F	feasible successor routes, 245-247
	successor routes, 244-245
Facebook (Wendell Odom), 761	mismatched Hello/dead timers, 279
failed interfaces, 43	OSPF area mismatches, 276-277
failing the exam, 751-752, 759-760	routers best routes, 170
failures	wildcard masks, 423
CHAP authentication, 337-338	firewalls, 715
HSRP, 521-522 keepalive, 336-337	First Hop Redundancy Protocol. See FHRP
PAP authentication, 337-338	first-in, first-out (FIFO), 477
FCS (Frame Check Sequence), 319	FlexStack, 149
FD (feasible distance), 227-228, 244	FlexStack-Plus, 149
feasibility conditions, 229, 247	flooding, 169
feasible successor routes, 228-229	flow
convergence, 247-248	networking, 467
identifying, 245-247	public cloud traffic, 712-713
FHRP (First Hop Redundancy	Forward delay timer (STP), 49
Protocol), 516	forwarding
features, 520	data. See routing
HSRP, 521	interface state, 41-43
active/passive model, 521	paths, 738
active/standby routers, choosing, 524	forwarding plane. See data plane
active/standby rules, 526	Fractional T1, 318
configuring, 523-524	Fractional T3, 318

Frame Check Sequence (FCS), 319	routes, 383
Frame Relay, 346	troubleshooting, 384
frames	ACLs, 387-388
broadcast storms, 39-41	interface state, 384-385
defined, 469	Layer 3 issues, 386
HDLC, 320	source/destination addresses, 384
incoming, 104-105	tunnel destination, 385-386
looping, 39	tunnel interfaces, 377
multiple frame transmissions, 41	unsecured networks, 378-380
PPP, 324	verifying, 382-384
switching, 105	group numbers (HSRP), 524
frequency command, 693	groups
FS (feasible successor), 613	endpoint, 735
full drops, 485	SNMPv3, 669-671
full mesh topology (MetroE), 350	
full neighbor state, 175, 594	Н
full updates, 218, 223	
full VLAN configuration example, 20-23	HDLC (High-level Data Link Control) 315, 319-323, 377
fully adjacent neighbors, 175, 598	headers
_	802.1Q, 473-474
G	802.11, 474
	delivery, 379
generic routing encapsulation (GRE), 376	IP, 472-474
"Get IEEE 802" program, 52	MPLS Label, 474
Get messages Get messages	Hello BPDU, 43
agent information, 662	Hello Interval, 221
RO/RW communities, 664	Hello Interval timer, 174
SNMPv2 support, 665-666	Hello messages (OSPF), 171-172
GLBP (Gateway Load Balancing	Hello timer
Protocol), 516	dead timer mismatches, troubleshooting
global unicast addresses, 563	279-280
Google App Engine PaaS, 707	STP, 49
GRE (generic routing encapsulation),	hexadecimal-to-binary conversion, 767
376	high availability, 149-150
GRE tunnels, 376	High-level Data Link Control (HDLC)
between routers, 377-378	315, 319-323, 377
configuring, 380-382	High-speed WICs (HWICs), 317
details, displaying, 382	historical success/failure counters (IP
functionality, testing, 384	SLAs), 679
large scale environments, 388	history
multipoint with DMVPN, 389	IP SLA data, 680-681
point-to-point, 378	OSPF, 585
	SNMP, 661

history buckets-kept 6 command, 693	routers configuring different VIPs, 531		
history enhanced command, 680 history enhanced interval command, 693 history filter all command, 693	version mismatches, 530-531 verifying, 525 versions, 528		
		history lives-kept 1 command, 693	HSRPv2 (HSRP version 2), 528
		Hold Interval, 221 hostname command, 327	hub and spoke topology (MetroE), 351 Huston, Geoff website, 287
hosts	HWICs (High-speed WICs), 317		
IPv6, 565	hypervisors, 699		
connectivity, verifying, 569-570	_		
issues, 573			
missing settings, 576-578			
name resolution problems, 575-576	IaaS (Infrastructure as a Service), 705		
pings fail from default router, 574-575	IANA (Internet Assigned Numbers		
pings only working in some cases,	Authority), 165		
573-574	ASNs, assigning, 165		
stateful DHCPv6, 565-566	ICMPv6 parameters, 635		
stateless address autoconfiguration (SLAAC), 566-567	IPv6 multicast address space registry website, 647		
routes, 339	website, 165		
server virtualization, 699	iBGP (Internal BGP), 288-289		
troubleshooting IPv4 settings	icmp-echo command, 693		
default router IP address setting, 541	ICMP-Echo operations, 678		
DNS problems, 540-541	ICMP Echo probe, 677		
ensuring IPv4 settings match, 537-538	icmp keyword, 454		
mismatched masks, 538-539	ICMPv6		
Hot Standby Router Protocol (HSRP), 516, 521	Echo Request messages, 640 messages, filtering, 635, 645-649		
active/passive model, 521	packets, matching, 641		
active/standby routers, choosing, 524 active/standby rules, 526	ICND2 practice exam. See practice exams		
configuration, troubleshooting, 529-530 configuring, 523-524	IEEE (Institute of Electrical and Electronics Engineers)		
failover, 521-522	802.1D Spanning-Tree states, 51		
group numbers, 524	802.1D standard, 51		
load balancing, 522-523	802.1w amendment, 51		
with/without preemption, 526-527	802.1x		
troubleshooting, 528	access, securing, 137		
ACL blocks HSRP packets, 531	authenticators, 137		
configuration, 529-530	LAN access, securing, 137-138		
group number mismatches, 531	default port costs, 48		
misconfiguration symptoms, 530	Ethernet standards, 348		
	"Get IEEE 802" program, 52		

ifconfig command, 537, 569, 583	interfaces
IGP (interior gateway protocol), 164,	ABR OSPF areas, verifying, 198
215	access, 105-106
BGPs, compared, 287	administratively shutdown, 43
classless/classful, 167	application programming (APIs), 730
configuring, 293	bandwidth
goals, 287	defaults, 203
metrics, 166-167	EIGRP metric calculations, 251
routing protocol algorithm, 165-166	EIGRP routes, tuning, 246
subnets, 288	higher reference, 204
IGRP (Interior Gateway Routing	OSPF costs based on, 202-203
Protocol), 166	blocking state, 41
implicit filtering, 648-649	delays, 251
incoming frames, 104-105	dialer
inferior Hello, 44	Layer 3 orientation, 400
infinity, 219	PPPoE, 393, 397-398
Inform messages, 662-663	down status, 336
SNMPv2, 666-667	EIGRP
SNMPv3, 674-675	configuration problems, 266-268
Infrastructure as a Service (IaaS), 705	enabled, 238-240, 262
injecting BGP table entries, 298	OSPF interfaces, compared, 268
advertising subnets to ISPs, 300-301	troubleshooting, 263-268
classful network routes, 298-300	EIGRP for IPv6, 620-621
static discard routes, 301-303	EtherChannels, adding, 100-101
instantiating VMs, 705	failed, 43
Integrated Intermediate System to	forwarding state, 41
Intermediate System (IS-IS), 166	LAN speeds, 465
interactive data application traffic, 466	learning state, 51
interactive voice traffic, 468	listening state, 51
interarea routes, 179, 199-200, 604	loopback, 191
intercloud exchanges, 710-711	multilink, 331
Intercloud Fabric, 711	Northbound (NBIs), 730-732
interface command, 20, 31, 515	OSPF
interface dialer command, 410	costs, 202-204
interface loopback command, 185, 211	EIGRP interfaces, compared, 268
interface multilink command, 343	identifying, 262
interface multilink 1 command, 332	passive, 185
interface port-channel command, 515	troubleshooting, 268-270
interface range command, 22	OSPFv2 configuration, 205-207
interface tunnel command, 379, 410	OSPFv3, 595
interface vlan command, 515	costs, 592, 602-604
	troubleshooting, 596-597
	verifying, 595-596
	55. 3.78, 7.7.7.5

passive	VPNs, 369
EIGRP, 239	benefits, 374
OSPF, 192-193	clients, 375-376
OSFPv3, 589	security, 373
per-VLAN STP costs, 68	site-to-site, 374-375
routed, 506-508	as WAN service, 369
routing protocol-enabled, verifying, 262	wireless, 372
Southbound (SBIs), 729-730 states	Internet Assigned Numbers Authority. See IANA
changing with STP, 51	Internet edge, 290-293
forwarding or blocking criteria, 42-43	Internet service providers. See ISPs
status codes, 335	Inter-Switch Link (ISL), 16, 497
subinterfaces, 496-498	intra-area routes, 179
switched virtual. See SVIs	ip -6 neighbor show command, 583
tunnel	ip access-group command, 426, 433, 441, 450, 461
ACLs, 387-388	ip access-list command, 445, 461
creating, 379	ip access-list extended command, 446
destinations, 385-386	IP ACLs (access control lists). See ACLs
Layer 3 issues, 386	ip address command, 538, 551-552
replacing serial links, 377	IP addresses on loopback interfaces, 185
state, 384-385	MLPPP, 332
virtual-access, 398	subinterfaces, 497
VLAN. See SVIs	ip address negotiated command, 394,
WANs, 465	410
working, 43	ip_address parameter, 187
interior gateway protocol. See IGP	IP addressing
Interior Gateway Routing Protocol	conversions
(IGRP), 166	binary-to-hexadecimal, 767
interior IP routing protocols, 221	decimal-to-binary, 764-766
Internal BGP (iBGP), 288-289	hexadecimal-to-binary, 767
internal processing (switches), 727-728	public clouds, 717-718
internal routers, 179, 589-590	ip domain-lookup command, 540-541
Internet	IP headers, 472-474
access, 369	ip hello-interval eigrp command, 235,
cable Internet, 371	258, 284, 614
DSLs (digital subscriber lines), 370-371	ip helper-address command, 542-543
fiber, 372	ip hold-time eigrp command, 235, 258,
WANs, 369	284
wireless WANs, 371-372	IP IGP metrics, 166-167
public cloud	ip mtu command, 281, 601
accessing, 707-709	ip name-server command, 540
computing branch office connections, 713	ip ospf command, 211

ip ospf cost command, 211	Layer 3 switching with SVIs
ip ospf dead-interval command, 284	configuring, 501-502
ip ospf hello-interval command, 284	troubleshooting, 503-505
ip route commands, 307	verifying, 502-503
ip routing command, 515	matching addresses
IP SLAs (IP Service Level Agreements),	any/all addresses, 423-424
676	exact IP address, 421
historical success/failure counters, 679	subset of address, 421-423
history data, troubleshooting with,	OSPF added, 190
680-681	OSPFv2 single-area configuration, 186
ICMP-Echo, 677-678	QoS marking, 472
operations, 677	routing protocols
responders, 677	displaying, 190
sources, 677	troubleshooting, 261-262
troubleshooting with	subnet masks
counters, 679-680	mismatched masks, 538-539
history data, 680-681	VLSM (variable length subnet
UDP Jitter probes, 677	masking), 549
ip sla command, 693	troubleshooting
ip sla restart command, 693	default router IP address setting, 541
ip sla schedule command, 678	DHCP issues, 542-543
IP telephony (VLANs), 28	DNS problems, 540-541
data and voice VLAN concepts, 29-30	incorrect addressing plans, 549-552
data and voice VLAN configuration and	IP forwarding issues, 545-548
verification, 30-32	LAN issues, 543-545
summary, 32	mismatched IPv4 settings, 537-538
ipconfig command, 537, 569, 583	mismatched masks, 538-539
IPP (IP Precedence) fields (QoS	packet filtering with access lists, 553
marking), 474-476	router WAN interface status, 552
IPsec, 374-375	ipv6 access-list commands
IPv4 routing	building, 644
ACLs, 633	IPv6 ACLs, 653
address families, 585	ipv6 access-list deny command, 644
EIGRP	ipv6 access-list permit command, 644
configuration, 236-237	ipv6 address command, 567, 583
routing table, 241-242, 249-251	ipv6 dhcp relay destination command,
verification, 237-242	583
Layer 3 EtherChannels	ipv6 eigrp command, 614, 630
configuring, 508-509	ipv6 hello-interval eigrp command, 630
troubleshooting, 511	ipv6 hold-time eigrp command, 630
verifying, 510	ipv6 mtu command, 601
Layer 3 switch routed ports, 505-508	ipv6 ospf command, 589, 609
	ipv6 ospf cost command, 609

ipv6 router eigrp command, 614, 630	global unicast addresses, 563
ipv6 router ospf command, 589, 609	host configuration, 565
IPv6 routing	stateful DHCPv6, 565-566
access restrictions with IPv6 ACLs, 650 ACLs, 632-633	stateless address autoconfiguration (SLAAC), 566-567
access-list commands, building, 644	link-local addresses, 564
access restrictions, 650	multicast addresses, 647
blocking, 647	OSPF, 585-586
capabilities, 635-636	OSPFv3
extended, 640-643	configuration, 587-588
filtering ICMPv6 NDP messages,	default routes, 593
645-648	interface cost metrics, 602-604
filtering policies, 634	interfaces, 595-597
ICMPv6 message filtering, 635	IPv6 MTU mismatches, 601-602
implicit filtering ICMPv6 NDP	IPv6 routes, troubleshooting, 604-605
messages, 648-649	load balancing, 592
IPv4 ACL, compared, 633	LSAs, 600
limitations, 636-637	LSDBs, 600-601
logging, 636	multiarea on ABR configuration,
management control, 649-650	590-591
prefix lengths, 636	neighbors, 597-600
router originated packets, 637	OSPFv2, compared, 587, 594
standard, configuring, 637-640	passive interfaces, 589
testing, 643	RIDs, 589
tunneled traffic matching, 636	route selection metrics, 592
addressing on routers configuration, 568	single-area configuration, 589-590
connectivity, verifying, 569	protocols, 585
hosts, 569-570	QoS marking, 473
routers, 571-572	routers, enabling, 567
EIGRP	routes
ASNs, 615	EIGRP for IPv6 metrics, 616-617
configuration, 613-616	OSPFv3 metrics, 592
DUAL, 613	static configuration, 568-569
EIGRP for IPv4, compared, 612-613,	subnetting, 563-564
619	troubleshooting, 572, 604-605
FS, 613	ACLs, 580
interfaces, 620-621	filtering issues, 573
load balancing, 617-618	host issues, 573
neighbors, 621-623	host pings fail from default router,
routes, 616-617, 624-626	574-575
successors, 613	host pings only working in some cases,
timers, 618	573-574
topology data, 623-624	missing IPv6 settings in host, 576-57

name resolution problems, 575-576 router issues, 573	L
routing, 579-580	labs, completing, 757-758
unicast addresses, 563-565	LACP (Link Aggregation Control
ipv6 traffic-filter command, 639, 653	Protocol), 79
ipv6 unicast routing command, 567, 583	LANs, 495
IS-IS (Integrated Intermediate System	defined, 13
to Intermediate System), 166	DPs, 47, 96-98
ISL (Inter-Switch Link), 16, 497	interfaces, 465
ISPs (Internet service providers), 369	redundancy, 38-41
default routes, learning, 303-304	security
dial connections with PPP, 391	IEEE 802.1x, 137-138
Internet edge, learning, 292-293	STP exposures, 58
router configuration example, 395	troubleshooting, 543-545
subnets, advertising, 300-301	VLAN support, adding, 115
<i>S</i> .	Layer 1
J	leased-line WANs
	CSU/DSUs, 318
Jenkins continuous integration and	physical components, 316-317
automation tool, 707	speeds, 317-318
jitter, managing, 465	troubleshooting, 335
	leased-line WANs with HDLC, 319
K	PPPoE
keepalive failures, 336-337	configuration, 393
keyboard, video display, or mouse	troubleshooting, 402-403
(KVM), 697	Layer 2
keys (encryption), 374	leased-line WANs, 336-338
keywords. See also commands	leased-lines with HDLC, 319-320
any, 423	MLPPP, 331
deny, 418, 424	PPPoE
icmp, 454	configuration, 393
log, 427, 636	troubleshooting, 403-404
permit, 418, 424	switches, 17
tcp, 438	Layer 3
udp, 438	GRE tunnel issues, 386
knowledge gaps, finding, 755-756	leased-line WANs, 338-339
K-values (EIGRP), 273	MetroE design, 352
KVM (keyboard, video display, or	E-LAN service, 353
mouse), 697	E-Line service, 352-353
	E-Tree service, 353-354
	MLPPP, 331
	MPLS, 358

MPLS VPNs, 360-361	link-local addresses, 564
EIGRP challenges, 362-363	link-state advertisements. See LSAs
OSPF area design, 361-362	link-state database. See LSDB
PPPoE	link-state protocols, 166. See also OSPF
configuration, 394	Link-State Update (LSU) packets, 173
status, verifying, 400-401	links
troubleshooting, 404	access
switches, 17	MetroE, 348
EtherChannels, 508-511	MPLS, 358
routed ports, 505-508	addresses, 294-295
with SVIs, 501-505	Ethernet, 174-175
VLAN (virtual LAN) routing, 19	RSTP types, 56
LCP (Link Control Protocol), 324-325	serial
learning state, 51	bandwidth, 226-227
leased-line WANs, 315	replacing with IP tunnels, 377
building, 319	routing IP packets over, 376
CSU/DSU, 318	list logic (IP ACLs), 419-421
with HDLC, 319	listening state (interfaces), 51
configuring HDLC, 321-323	LLQ (Low Latency Queuing), 478-479
de-encapsulating/re-encapsulating IP	load balancing
packets, 320	EIGRP, 249-251
framing, 320	EIGRP for IPv6, 617-618
physical components, 316-317	HSRP, 522-523
with PPP	MLPPP, 331
authentication, 325-326	OSPF, 204
configuring PPP, 326-327	OSPFv3, 592
configuring PPP CHAP, 327-328	local SPAN, configuring, 684-687
configuring PPP PAP, 328-330	location (ACLs), 417-418
control protocols, 324	log keyword, 427, 636
framing, 324	log messages, unsolicited, 270
multilink. See MLPPP	logging IPv6 ACLs, 636
PPP functions, 323	logical switches, 148
speeds, 317-318	logins (AAA), 139-142
troubleshooting, 335	Long-Term Evolution (LTE), 372
Layer 1 problems, 335	loopback interfaces, 191
Layer 2 problems, 336-338	looping frames, preventing, 39
Layer 3 problems, 338-339	loss, managing, 466
mismatched subnets, 339	Low Latency Queuing (LLQ), 478-479
least-bandwidth, 224	LSAs (link-state advertisements), 173
limiting SPAN sources, 687-688	exchanging with OSPF neighbors, 173
Link Aggregation Control Protocol (LACP), 79	DRs on Ethernet links, 174-175
Link Control Protocol (LCP), 324-325	maintenance, 174

flooding, 169	marking, 470-472
LSDB relationship, 169	with classification, 470
OSPFv3, 600	DiffServ DSCP values, 475-476
router, 600	Ethernet 802.1Q headers, 473-474
LSDB (link-state database), 169	Ethernet 802.11 headers, 474
area design, 179	IP headers, 472-474
best routes, finding, 170	MPLS Label headers, 474
contents, displaying, 189	trust boundaries, 474
exchanging between neighbors, 173-175	matching packets, 418
LSAs relationship, 169	matching parameters
OSPFv3, 600-601	extended numbered ACLs
LSU (Link-State Update) packets, 173 LTE (Long-Term Evolution), 372	protocol, source IP, and destination IP, 437-438
212 (20mg 10m 20m 20m), 072	TCP and UDP port numbers, 438-441
M	standard numbered ACLs
141	any/all addresses, 423-424
mac-address command, 410	command syntax, 421
MAC addresses	exact IP address, 421
burned-in, 43	subset of address, 421-423
forwarding, 103	wildcard masks, 421-423
learning, 103	MaxAge timer (STP), 49
tables	maximum-paths command, 204, 211, 258
EtherChannel impact, predicting,	EIGRP
103-104	for IPv4, 235, 614
instability, 41	for IPv6, 618, 630
STP impact, predicting, 102	load balancing, 249
maintenance	OSPFv3, 592, 609
EIGRP neighbors, 221	maximum transmission unit (MTU), 224
OSPF neighbors, 174	measuring
Managed Extensibility Framework	cloud computing services, 703
(MEF), 349	end-user traffic, 677
Management Information Base. See MIB	MEC (Multichassis EtherChannel), 151
management plane (networking devices), 727	MEF (Managed Extensibility Framework), 349
managing	memory (TCAM), 728
bandwidth, 465	messages
delay, 465	challenge, 325
IPv6 ACLs, 649-650	debug, 248
jitter, 465	EIGRP, 230
loss, 466	Get
SNMP, 661	agent information, 662
manual EtherChannels configuration,	RO/RW communities, 664
77-78	SNMPv2 support, 665-666

ICMPv6	infinity, 219
Echo request, 640	IPv6 routes
filtering, 635	EIGRP for IPv6, 616-617
NDP, filtering, 645-649	OSPFv3 interface costs, 592
Inform, 662-663	OSPF, 202
SNMPv2 support, 666-667	based on interface bandwidth, 202-203
SNMPv3, 674-675	higher reference bandwidth, 204
NA (neighbor advertisement), 648	setting, 204
NS (neighbor solicitation), 648	OSPFv3, 602-604
OSPF Hello, 171-172	per-VLAN STP, 65-67
partial update, 220	MetroE (Metro Ethernet), 346-347
RA (router advertisement), 648	access links, 348
RS (router solicitation), 648	data usage, 354-356
RSTP, 55	IEEE Ethernet standards, 348
Set	Layer 3 design, 352-354
RO/RW communities, 664	MEF, 349
SNMPv2 support, 665-666	physical design, 347-348
writing variables on agents, 662	services, 349
SNMP variables, monitoring, 662	E-LAN, 350-353
STP Hello BPDU, 43	E-Line, 349-353
Trap, 662-663	E-Tree, 351-354
SNMPv2 support, 666-667	topologies
SNMPv3, 674-675	full mesh, 350
unsolicited log, 270	hub and spoke, 351
update	partial mesh, 351
BGP, 287, 294	Point-to-Point, 349-350
DV routing protocols, 217-219 EIGRP, 223-224	MIB (Management Information Base), 661-663
metrics	OIDs, 663
BGP best path selection, 289-290	variables
EIGRP, 224	monitoring, 662
bandwidth, 251	numbering/names, 663
calculation, 224	views, 670
components, 248	mind maps, reviewing, 757
delay settings, 251	mismatched IPv4 settings,
EIGRP topology database, 248	troubleshooting, 537-538
example, 225-226	mismatched masks, troubleshooting, 538-539
FD (feasible distance), 227-228	mismatched subnets, 273
RD (reported distance), 227-228	MLPPP (multilink PPP), 331
route load balancing, 250	configuring, 332
serial link bandwidth, 226-227 IGP, 166-167	Layer 2 fragmentation balance, 331 Layer 3, 331

load balancing, 331	Multiprotocol BGP (MPBGP), 360
verifying, 333-335	Multiprotocol Label Switching. See
monitor session command, 684, 694	MPLS
monitoring MIB variables, 662	multithreading, 698
MPBGP (Multiprotocol BGP), 360	
MPLS (Multiprotocol Label Switching), 346, 356-357	N
access links, 358	NA (neighbor advertisement) messages, 648
Label headers, 474	name command, 20, 36, 126
Layer 3 design, 358	named ACLs
public cloud connections, 709	configuration, 445-446
QoS, 359-360	editing, 446-448
Virtual Private Networks. See MPLS VPNs	overview, 444-445
MPLS VPNs (MPLS Virtual Private Networks), 357	named mode (EIGRP configuration),
EIGRP challenges, 362-363	names (MIB variables), 663
Layer 3, 360-363	National Institute of Standards and
OSPF area design, 361-362	Technology (NIST), 702
MST (Multiple Spanning Tree), 66	native VLANs, 16
MTU (maximum transmission unit), 224	mismatched on trunks, 110
IPv6 mismatches, 601-602	router configuration, 497-498
OSPF mismatched settings, 281	NBAR (Network Based Application Recognition), 471-472
mtu command, 410	NBIs (Northbound Interfaces), 730-732
multiarea on ABR OSPFv3 configuration, 590-591	NCP (Network Control Protocols), 324
multiarea OSPFv2 configuration,	NDA (nondisclosure agreement), 752
194-197	NDP (Neighbor Discovery Protocol), 563
network commands, 197	filtering messages through IPv6 ACLs,
single-area configurations, 195-196	645-648
subnets, 194	implicit filtering messages through IPv6
verifying, 197-200	ACLs, 648-649
multiarea OSPFv3 configuration, 588 multicast addresses, 647	SLAAC, 566
Multichassis EtherChannel (MEC), 151	ndp -an command, 583
multihomed Internet edge design, 290	neighbor commands, 307
	neighbor shutdown command, 297
multilayer switches. See Layer 3, switches	neighbors
multilink interfaces, 331	BGP, 287, 297
multiple frame transmissions, 41	eBGP
multiple queues (queuing systems), 477	configuring, 295
multiple serial links between routers,	disabling, 297
330	using link addresses, configuring, 294
Multiple Spanning Tree (MST), 66	verifying, 296-297

EIGRP for IPv4, 222-223	network functions virtualization (NFV),
discovery, 222	716
requirements, 272	network interface cards (NICs), 681, 699
status, 221, 240-241	
topology information, exchanging, 223-224	Network Interface Modules (NIMs), 317 Network Layer Reachability Information
troubleshooting, 273-274, 277	(NLRI), 288
verifying, 222, 272-273	Network Management Station. See NMS
EIGRP for IPv6, 621-623	Network Time Protocol (NTP), 718-719
OSPF, 170-171	networks
area mismatches, finding, 276-277	analyzers, 682-683
duplicate RIDs, 277-279	broad access, 702
Hello messages, 171-172	classful
Hello/dead timer mismatches, 279-280	autosummarization at boundaries,
LSDB exchange, 173-175	252-253
meeting, 171	routes, injecting, 298-300
requirements, 275	contiguous, 253
RIDs, learning, 171	controllers
states, 172, 175, 275	centralized control, 729
troubleshooting, 274-280	defined, 728
OSPFv3, 597	Northbound Interfaces (NBIs), 730-732
requirements, 598	Southbound Interfaces (SBIs), 729-730
troubleshooting, 598-600	devices, 725
verifying, 597-598	control, centralizing729
relationships, 270-271	control plane, 726-727
routing protocol relationships,	data plane, 725-726
troubleshooting, 262	management plane, 727
states, 594	security, 139-142
netsh interface ipv6 show neighbors	switch internal processing, 727-728
command, 583	discontiguous, 252-254
Network Based Application Recognition	flow, 467
(NBAR), 471	physical data center, 700
network command, 211	programmability, 724
BGP table entries, injecting, 298, 307	APIC Enterprise Module (APIC-EM),
advertising subnets to ISPs, 300-301	735-737
classful network routes, 298-300	Application Centric Infrastructure
static discard routes, 301-303	(ACI), 734-735
EIGRP, 235-237, 258, 614	comparisons, 737
OSPF 3	public cloud
OSPFv2	address assignment services, 717-718
interface configuration, 205	DHCP services, 718
multiarea configuration, 197 Network Control Protocols (NCP) 324	DNS services, 716-717
TREIMORK CONTROL PROTOCOLS (INC. P) 4/4	

NTP, 718-719 VNFs, 714-716	no spanning-tree portfast default command, 89
redundancy needs, 517-518	no switchport command
traffic	Layer 3 EtherChannels, 510
bandwidth, managing, 465	Layer 3 switches, 515
characteristics, 465	routed ports, 506
delay, 465	nondisclosure agreement (NDA), 752
jitter, 465	noninteractive data application traffic,
loss, 466	nonroot switches (RPs), 94-96
types, 466-468	problems, troubleshooting, 96
unsecured, 378-380	tiebreakers, 95-96
virtual, 699-700, 716	normal-time questions, 749
VMs, 700	Northbound Interfaces (NBIs), 730
Nexus 1000v vSwitch, 700	notification community strings, 667
NFV (network functions virtualization),	notifications
716	SNMP, 662-663
NHRP (Next Hop Resolution Protocol), 389	
	SNMPv3, 674-675
NICs (network interface cards), 681, 699	NS (neighbor solicitation) messages, 648
NIMs (Network Interface Modules), 317	NTP (Network Time Protocol), 718-719
NIST (National Institute of Standards	numbered ACLs, configuration, 448-449
and Technology), 702	numbers
NLRI (Network Layer Reachability	ASNs. See ASNs
Information), 288	HSRP group, 524
NMS (Network Management Station),	MIB variables, 663
661	ROAS subinterfaces, 497
notification community strings, 667	sequence numbers, 446-448
SNMP, 661-663	numeric reference table
no auto-summary command, 254	binary-to-hexadecimal conversion, 767
no ip access-group command, 449	•
no ip address command, 510	decimal-to-binary conversion, 764-766
no ip domain-lookup command, 541	hexadecimal-to-binary conversion, 767
no ip sla schedule 1 command, 678	0
no neighbor shutdown command, 297	<u> </u>
no passive-interface command, 211, 259	ODL (OpenDaylight), 733-734
no shutdown command, 36, 343	Odom, Wendell Twitter/Facebook
EIGRP for IPv6, 616, 630	information, 761
Layer 1 leased-line WAN problems, 336	OIDs (object IDs), 663
OSPF processes, 280	on-demand self-service (cloud
ROAS subinterfaces, 499	computing), 702
no spanning-tree portfast bpduguard	one-way delay, 465
default command, 89	ONF (Open Networking Foundation), 732

Open SDN, 732-733	load balancing, 204
Open SDN Controller (OSC), 734	LSAs, 169
Open Shortest Path First. See OSPF	metrics, 202
OpenDaylight (ODL), 733-734	based on interface bandwidth, 202-203
OpenFlow, 730-732	higher reference bandwidth, 204
operations (IP SLAs), 677-678	setting, 204
OpFlex, 730	MTU mismatched settings, 281
OSC (Open SDN Controller), 734	neighbors, 170-171
OSPF (Open Shortest Path First), 162,	area mismatches, finding, 276-277
169	DRs on Ethernet links, 174-175
area design, 179	duplicate RIDs, 277-279
ABR, 179, 198	Hello messages, 171-172
areas, 178-179	Hello/dead timer mismatches, 279-280
backbone areas, 179	LSAs, exchanging, 173
backbone routers, 179	maintaining, 174
benefits, 180	meeting, 171
interarea routes, 179	neighbor requirements, 271
internal routers, 179	requirements, 275
intra-area routes, 179	RIDs, learning, 171
MPLS VPNs, 361-362	states, 172, 175, 275
network size, 178	troubleshooting, 274-280
problems, 177, 268	process-ids, 186
single-area, 177	processes, shutting down, 280-281
SPF workload, reducing, 179	RIDs
three-area, 178	configuring, 191-192
best routes with SPF, calculating,	duplicate, troubleshooting, 277-279
176-177	super backbone, 361
configuration	Version 2. See OSPFv2
errors, troubleshooting, 269-270	OSPFv2 (OSPF Version 2), 162
mode, enabling, 186	default routes, 200-202
default routes, 200-202	dual stack, 585
Dijkstra SPF algorithm, 170	interface configuration, 205-207
EIGRP, compared, 214	history, 585
goals, 287	load balancing, 204
Hello/dead timers, 279-280	metrics, 202
history, 585	based on interface bandwidth, 202-203
interarea routes, verifying, 199-200	higher reference bandwidth, 204
interfaces	setting, 204
costs, setting, 202-204	multiarea configuration, 194-197
EIGRP interfaces, compared, 268	network commands, 197
identifying, 262	single-area configurations, 195-196
passive, 185	subnets, 194
troubleshooting, 268-270	verifying, 197-200

OSPFv3, compared, 587, 594	overlapping subnets
RIPv2/EIGRP, compared, 221	with VLSM, 550-552
single-area configuration, 186-187	without VLSM, 549-550
IPv4 addresses, 186	
matching with network command, 187-188	<u>P</u>
multiarea configurations, 195-196	PaaS (Platform as a Service), 706-707
network command, 187	packets
organization, 185	classification, 469
passive interfaces, 192-193	ACLs, 471
RIDs, 191-192	with marking, 470
verifying, 188-190	matching, 470
wildcard masks, 187-188	NBAR, 471-472
OSPFv3 (OSPF Version 3), 584	router queuing, 469-470
address families dual stack, 586	routers, 471
configuration, 587	congestion
default routes, 593	avoidance, 484-485
load balancing, 592	management, 477-479
multiarea example, 588	de-encapsulating/re-encapsulating with
multiarea on ABR, 590-591	HDLC, 320
route selection metrics, setting, 592	defined, 469
single-area, 589-590	filtering. See ACLs
dual stack, 585	ICMPv6, 641
interfaces, 595	marking, 472
troubleshooting, 596-597	802.1Q headers, 473-474
verifying, 595-596	802.11 headers, 474
IPv6	with classification, 470
MTU mismatches, 601-602	DiffServ DSCP values, 475-476
routes, 602-605	IP headers, 472-474
LSAs, 600	MPLS Label headers, 474
LSDBs, 600-601	trust boundaries, 474
neighbors, 597	matching, 418
requirements, 598	policing, 480-482
troubleshooting, 598-600	router originated, 637
verifying, 597-598	router queuing, 469
OSPFv2, compared, 587, 594	routing over serial links, 376
passive interfaces, 589	shaping, 480-484
RIDs, 589	TCP, 641
output queuing, 477	UDP, 641
overages (MetroE data usage), 355-356	PAgP (Port Aggregation Protocol), 79
overlapping routes, troubleshooting,	PAP (Password Authentication Protocol)
545-548	authentication, 326, 337-338
	configuring, 328-330

parameters	per-VLAN Spanning Tree Plus
ICMPv6, 635	(PVST+), 65-67
ip_address, 187	physical data center networks, 700
wildcard_mask, 187	physical design (MetroE), 347-348
partial mesh topology (MetroE), 351	physical server model, 698
partial updates (EIGRP), 220, 223	ping command, 455, 540-543, 583
passive-interface command, 193, 211,	IPv6
284	connectivity, testing, 570-571
EIGRP, 239, 259	routes, testing, 583
OSPF, 185	leased-line WANs, 335
OSPFv3, 589	self-ping, 456-457
passive-interface default command, 193,	ping6 command, 583
259	IPv6 ACLs, 639
passive interfaces	IPv6 connectivity, testing, 570
EIGRP, 239	pings (IPv6 hosts)
OSPF, 185, 192-193	failure from default router, 574-575
OSFPv3, 589	name resolution problems, 575-576
Password Authentication Protocol. See	working only in some cases, 573-574
PAP	planes (networking devices)
passwords, 664	control, 726-727
path attributes (BGP), 289-290	data, 725-726
Path MTU Discovery (PMTUD), 635	management, 727
paths	Platform as a Service (PaaS), 706-707
forwarding, 738	PMTUD (Path MTU Discovery), 63:
selections, 163	point-to-point edge ports, 56, 84
PBX (private branch exchange), 29	point-to-point GRE tunnels, 378
PCP (Priority Code Point) field (802.1Q header), 473	point-to-point lines. See leased-line WANs
PE (provider edge), 358	Point-to-Point over Ethernet. See
Pearson Network Simulator (the Sim),	PPPoE
758	point-to-point ports, 56, 84
peers, 287	Point-to-Point Protocol. See PPP
periodic updates, 218	Point-to-Point topology (MetroE),
permit command, 445-447, 461	349-350
extended IPv6 ACLs, 640	points of presence (PoP), 288
GRE tunnel ACLs, 387	policies
IPv6 ACLs, 638	ACI, 735
permit gre command, 410	filtering, 634
permit icmp any any router-	policing
advertisement command, 648	data overages (MetroE), 355
permit icmp any any router-solicitation	QoS, 480
command, 648	discarding excess traffic, 481
permit ipv6 commands, 653	edge between networks, 481-482
permit keyword, 418, 424	,

features, 482	PPP (Point-to-Point Protocol), 323, 390
traffic rate versus configured policing	authentication, 325-326
rate, 480-481	CHAP
rate, 480	authentication, 325, 337-338
pooling resources, 702	configuring, 327
PoP (points of presence), 288, 347	verifying, 328
Port Aggregation Protocol (PAgP), 79	configuring, 326-327
PortChannels. See EtherChannels	control protocols, 324
PortFast, 57-58	dial connections to ISPs, 391
configuring, 74	framing, 324
enabling/disabling, 75	leased-line WANs, 323
global settings, displaying, 76	multilink (MLPPP), 331
verifying, 75	configuring, 332
ports	Layer 2 fragmentation balance, 331
802.1w RSTP roles, 53	Layer 3, 331
alternate, 53-54, 83	load balancing, 331
backup, 53, 83	verifying, 333-335
blocking, choosing, 39	PAP
channels, 78	authentication, 326, 337-338
costs	configuring, 328-330
IEEE default, 48	PPPoE Layer 2 configuration, 393
STP, 46, 71-72	status, 327
designated, 42, 47, 53	ppp authentication chap command, 327
disabled, 53	ppp authentication command, 332, 343
Layer 3 switch routed, 505-508	ppp chap hostname command, 410
numbers, matching, 438-441	ppp chap password command, 410
per-VLAN STP costs, 68	ppp multilink command, 332, 344
root. See RPs	ppp multilink group command, 344
RSTP, 83	ppp multilink group 1 command, 332
backup, 55	ppp pap sent-username command, 328,
roles, 53	343
states, 84-85	PPPoE (Point-to-Point over Ethernet),
types, 56, 84	390-391
SPAN destination/source, 683	configuring, 392
stacking ports, 147	ISP router configuration example, 395
states	Layer 1, 393
RSTP, 84	Layer 2, 393
STP versus RSTP, 54	Layer 3, 394
switch root, choosing, 45-46	summary, 394-395
trusted/untrusted, 143-145	enabling, 394
powers of 2 numeric reference table, 769	history, 391

troubleshooting, 401	pre-exam suggestions, 750
customer router configuration, 401	preparing for failure, 751-752
dialer 2 status, 402	question types, 748
Layer 1, 402-403	ready to pass assessment, 759
Layer 2, 403-404	study tasks, 760
Layer 3, 404	studying after failing to pass, 759-760
summary, 405	tutorial, 748-749
verification, 396-397	prioritization (congestion management)
dialers, 397-398	477
Layer 3 status, 400-401	Priority Code Point (PCP) field (802.10
session status, 399-400	header), 473
virtual-access interfaces, 398	priority queues, 478
pppoe-client dial-pool number command, 393, 410	priv keyword (snmp-server group command), 672
pppoe enable command, 394, 410	private branch exchange (PBX), 29
practice exams	private cloud computing, 703-704
answering questions, 753-755	private WANs
CCNA R&S, 753	MetroE, 347
checklist, 753	access links, 348
ICND2, 753	data usage, 354-356
knowledge gaps, finding, 755-756	E-LAN services, 350-353
other, 755	E-Line services, 349-353
scores, 759	E-Tree services, 351-354
taking, 752-753	full mesh topology, 350
preemption (HSRP active/standby	hub and spoke topology, 351
roles), 526-527	IEEE Ethernet standards, 348
pre-exam suggestions, 750	Layer 3 design, 352-354
prefixes	MEF, 349
BGP, 288	partial mesh topology, 351
IPv6, 564, 636	physical design, 347-348
preparing for the exam	Point-to-Point topology, 349-350
CLI skills, 757-758	services, 349
exam-day suggestions, 750-751	MPLS, 356-357
knowledge gaps, finding, 755-756	access links, 358
practice exams	Layer 3 design, 358
answering questions, 753-755	VPNs EIGRP challenges, 360-363
CCNA R&S, 753	QoS, 359-360
checklist, 753	VPNs, 357
ICND2, 753	public cloud, accessing, 709-713
other, 755	types, 346
scores, 759	probes, 677-678
taking, 752-753	process-ids (OSPF), 186

processes	DV (distance vector), 166, 216
OSPF, 280-281	distance/vector information learned,
RSTP, 55	216-217
programmability (network), 724	EIGRP as, 220-221
APIC Enterprise Module (APIC-EM),	route poisoning, 219-220
735-737	split horizon, 219
Application Centric Infrastructure (ACI),	update messages, 217-219
734-735	EAP, 138
comparisons, 737	EAPoL, 138
proprietary routing protocols, 166	eBGP, 288-289
protocols, 214	Internet edge, 290-293
BGP, 165, 286	neighbors, 294-297
AS, 288	EGP (exterior gateway protocol), 287
ASNs, 288	EIGRP. See EIGRP
configuring, 293-297	FHRP, 516
IGPs, compared, 287	features, 520
ISP default routes, learning, 303-304	HSRP. See Hot Standby Router Protocol
neighbors, 287, 297	(HSRP)
reachability, 287	need for, 519
route advertising, 287-288	options, 520
routing table analysis reports website,	GLBP, 516
287	HDLC, 315, 319-323, 377
table entries, injecting, 298-303	HSRP, 516, 521
update messages, 287, 294	active/passive model, 521
BPDUs (bridge protocol data units), 43	active/standby routers, choosing, 524
CHAP	active/standby rules, 526
authentication, 325, 337-338	configuring, 523-524
configuring, 327	failover, 521-522
verifying, 328	group numbers, 524
control plane, 727	load balancing, 522-523
DHCP	with/without preemption, 526-527
configuration settings, 144	troubleshooting, 528-531
DHCP-based attacks, 143-144	verifying, 525
DHCP Binding Table, 145	versions, 528
features, 142	iBGP, 288-289
ports as trusted, configuring, 144	IGPs, 215
rate limiting, 145	BGPs, compared, 287
rules summary, 144	configuring, 293
trusted ports, 145	goals, 287
trusted/untrusted ports, 143	IGRP (Interior Gateway Routing
untrusted ports, 145	Protocol), 166
Dijkstra SPF algorithm, 170	IPv6, 585
DTP, 108	link-state, 166

management plane, 727	link-state, 166
matching, 437-438	OSPF. See OSPF
MPBGP, 360	path selections, 163
NDP, 563, 566	proprietary, 166
NHRP, 389	RIPv1, 215
NTP, 718	RIPv2, 215
OSPF. See OSPF	route redistribution, 167
OSPFv2. See OSPFv2	troubleshooting, 261-262
OSPFv3. See OSPFv3	RSTP, 51-52
PAgP, 79	alternate ports, 53-54
PAP	backup port role, 55
authentication, 326, 337-338	Cisco Catalyst STP modes, 80-82
configuring, 328-330	link types, 56
PPP. See PPP	port roles, 53
PPPoE, 390-391	port states, 54
configuring, 392-395	port types, 56
enabling, 394	processes, 55
history, 391	standards, 51
ISP router configuration example, 395	STP, compared, 52
troubleshooting, 401-405	RTP, 223
verification, 396-401	SNMP. See SNMP
RADIUS, 138-140	STA (spanning-tree algorithm), 42
RIP, 166	STP. See STP
RIPv2, 287	TACACS+, 139-140
routable, 163	TCP
routed, 163	BPG connections, displaying, 296
routing	packets, 641
· ·	puckers, orr
	port manulare matching 128 111
administrative distance, 168	port numbers, matching, 438-441
algorithms, 165-166	transporting messages between BGP
algorithms, 165-166 AS, 165	transporting messages between BGP peers, 294
algorithms, 165-166 AS, 165 autosummarization, 252-254	transporting messages between BGP peers, 294 windowing, 484-485
algorithms, 165-166 AS, 165 autosummarization, 252-254 classless/classful, 167, 252	transporting messages between BGP peers, 294 windowing, 484-485 UDP
algorithms, 165-166 AS, 165 autosummarization, 252-254 classless/classful, 167, 252 convergence, 164	transporting messages between BGP peers, 294 windowing, 484-485 UDP Jitter probes, 677
algorithms, 165-166 AS, 165 autosummarization, 252-254 classless/classful, 167, 252 convergence, 164 defined, 163	transporting messages between BGP peers, 294 windowing, 484-485 UDP Jitter probes, 677 packets, 641
algorithms, 165-166 AS, 165 autosummarization, 252-254 classless/classful, 167, 252 convergence, 164 defined, 163 distance vector, 166	transporting messages between BGP peers, 294 windowing, 484-485 UDP Jitter probes, 677 packets, 641 port numbers, matching, 438-441
algorithms, 165-166 AS, 165 autosummarization, 252-254 classless/classful, 167, 252 convergence, 164 defined, 163 distance vector, 166 DV. See DV protocols	transporting messages between BGP peers, 294 windowing, 484-485 UDP fitter probes, 677 packets, 641 port numbers, matching, 438-441 VRRP, 516
algorithms, 165-166 AS, 165 autosummarization, 252-254 classless/classful, 167, 252 convergence, 164 defined, 163 distance vector, 166 DV. See DV protocols EGP (exterior gateway protocol), 164	transporting messages between BGP peers, 294 windowing, 484-485 UDP Jitter probes, 677 packets, 641 port numbers, matching, 438-441 VRRP, 516 VTP, 114
algorithms, 165-166 AS, 165 autosummarization, 252-254 classless/classful, 167, 252 convergence, 164 defined, 163 distance vector, 166 DV. See DV protocols EGP (exterior gateway protocol), 164 functions, 163	transporting messages between BGP peers, 294 windowing, 484-485 UDP fitter probes, 677 packets, 641 port numbers, matching, 438-441 VRRP, 516 VTP, 114 automated update powers, 114
algorithms, 165-166 AS, 165 autosummarization, 252-254 classless/classful, 167, 252 convergence, 164 defined, 163 distance vector, 166 DV. See DV protocols EGP (exterior gateway protocol), 164 functions, 163 IGP, 164-167	transporting messages between BGP peers, 294 windowing, 484-485 UDP Jitter probes, 677 packets, 641 port numbers, matching, 438-441 VRRP, 516 VTP, 114 automated update powers, 114 configuration, 121-122
algorithms, 165-166 AS, 165 autosummarization, 252-254 classless/classful, 167, 252 convergence, 164 defined, 163 distance vector, 166 DV. See DV protocols EGP (exterior gateway protocol), 164 functions, 163 IGP, 164-167 interfaces enabled with, verifying, 262	transporting messages between BGP peers, 294 windowing, 484-485 UDP fitter probes, 677 packets, 641 port numbers, matching, 438-441 VRRP, 516 VTP, 114 automated update powers, 114 configuration, 121-122 domains, 117-119
algorithms, 165-166 AS, 165 autosummarization, 252-254 classless/classful, 167, 252 convergence, 164 defined, 163 distance vector, 166 DV. See DV protocols EGP (exterior gateway protocol), 164 functions, 163 IGP, 164-167	transporting messages between BGP peers, 294 windowing, 484-485 UDP Jitter probes, 677 packets, 641 port numbers, matching, 438-441 VRRP, 516 VTP, 114 automated update powers, 114 configuration, 121-122

NBAR, 471-472 router queuing, 469-470 routers, 471

knowledge gaps, finding, 755-756 types, 748 queuing congestion management, 477

Low Latency Queuing (LLQ), 478-479 multiple queues, 477

output queuing, 477 prioritization, 477 round robin scheduling, 477-478 strategy, 479 priority queues, 478 routers, classification for, 469 starvation, 479	relay agents (DHCPv6), 566 Reliable Transport Protocol (RTP), 223 remark command, 445, 461 Remote SPAN (RSPAN), 684 reply messages (EIGRP), 230 reported distance (RD), 227-228, 244 Representational State Transfer (REST), 731
R	requirements
	cloud computing services, 702
RA (router advertisement) messages,	EIGRP for IPv6 neighbors, 621
578, 648	neighbors, 271
RADIUS protocol, 138-140	EIGRP, 272
rapid elasticity (cloud computing), 703	OSPF, 275
Rapid PVST+, 66	OSPFv3, 598
Rapid Spanning Tree Protocol. See RSTP	SNMPv3 configuration, 669
rate limiting (DHCP snooping), 145	VTP, 118-119
RD (reported distance), 227-228, 244	resource pooling, 702
reachability (BGP), 287	responders (IP SLAs), 677
read-only (RO) communities (SNMP),	REST (Representation State Transfer), 731
664	RESTful APIs, 731
read-write (RW) communities (SNMP), 664	reverse engineering from ACL to address range, 429-430
ready to pass assessment (exam), 759	reversed source/destination IP address,
Real-time Transport Protocol (RTP),	troubleshooting, 452-453
223	RFC 1065, 661
redistribution	RFC 4301, Security Architecture for the
Internet edge ISP routes, learning, 292	Internet Protocol, 374
MPLS VPNs, 360	RIDs (router IDs), 171
redundancy	defining, 185
FHRP, 519-520	EIGRP, configuring, 240
LANs, 38-41	OSPF, 171
network needs for, 517-518	configuring, 191-192
single points of failure, 517 reference bandwidth, 203-204	duplicate, troubleshooting, 277-279
relationships (neighbors), 270	OSPFv3, 589
EIGRP for IPv6, 621-623	RIP (Routing Information Protocol), 166, 215
OSPFv3, troubleshooting, 598-600	RIPv2 (RIP Version 2), 215
pinging routers, confirming, 271	EIGRP/OSPFv2, compared, 221
requirements, 271	goals, 287
states, 594	RO (read-only) communities (SNMP), 664

ROAS (router-on-a-stick), 494-496	best routes, finding, 170
configuration, 496-498	classification, 471-472
troubleshooting, 500	Cloud Services Routers (CSRs), 709
verifying, 498-499 roles	configuring different VIPs, troubleshooting, 531
	data plane processing, 725
ports	designated (DRs), 174
alternate, 53-54	backup (BDRs), 174
backup, 55	discovering, 198-199
root. See RPs	Ethernet links, 174-175
RSTP, 53, 83	DROthers, 175
STP, 50	flooding, 169
root bridge IDs, 43	GRE tunnels between, 377-378
root costs (switches), 42	HSRP
root ports. See RPs root switches	active/passive model, 521
	active/standby routers, choosing, 524
electing, 44-45, 72-74	active/standby rules, 526
ruling out switches, 93-94 STP verification, 70	configuring, 523-524
troubleshooting, 93-95	failover, 521-522
round robin scheduling (queuing),	group numbers, 524
477-478	load balancing, 522-523
round-trip delay, 465	with/without preemption, 526-527
Round Trip Time (RTT), 679	troubleshooting, 528-531
routable protocols, 163	verifying, 525
routed ports, 506-508	versions, 528
routed protocols, 163	IDs. See RIDs
Router Advertisement (RA) messages, 578	internal, 179, 589-590
router bgp command, 294-295	IPv6
router eigrp command, 235, 258, 614	addressing configuration, 568
router-id command, 211	connectivity, verifying, 571-572
OSPFv3, 609, 589	issues, 573
RIDs, defining, 185	routing, enabling, 567
router-on-a-stick. See ROAS	static route configuration, 568-569
router ospf command, 185, 211	troubleshooting, 579-580
router ospf 1 command, 186	ISP, 395
Router Solicitation (RS), 578	LSAs, 600
routers. See also routes; routing	multiple serial links between, 330
ABR (Area Border Router), 179	OSPF interface costs, 202-204
interface OSPF areas, verifying, 198	public cloud networks, 715
OSPFv2 multiarea configuration, 196-197	QoS, 469
backbone, 179	

queuing	OSPF
classification for, 469	default routes, 200-202
congestion management, 477-479	interarea, verifying, 199-200
strategy, 479	poisoning, 219-220
redundant, 519. See also FHRP	redistribution, 360
ROAS, 494-496	static discard, 301-303
configuration, 496-498	successor, 244-245
native VLANs, 497-498	routing. See also routes; routers
subinterfaces, creating, 496-497	EIGRP for IPv6, 616
troubleshooting, 500	LANs, 495
verifying, 498-499	redistribution, 167
router WAN interface status, 552	troubleshooting
routing IP packets over serial links, 376	default router IP address setting, 541
troubleshooting	DHCP issues, 542-543
DHCP issues, 542-543	DNS problems, 540-541
LAN issues, 543-545	incorrect addressing plans, 549-552
VLAN routing, 17-18	IP forwarding issues, 545-548
routes. See also routers; routing	LAN issues, 543-545
BGP, 287-290	mismatched IPv4 settings, 537-538
classful networks, injecting, 298-300	mismatched masks, 538-539
default, 593	router WAN interface status, 552
discard, 302	VLAN. See VLANs, routing
EIGRP	Routing Information Protocol (RIP),
choosing, 222	166
load balancing, 249-251	routing protocols
tuning with bandwidth, 246	administrative distance, 168
variance, 250-251	algorithms, 165-166
EIGRP for IPv6, 624-626	AS, 165
feasibility conditions, 229	autosummarization, 252-254
feasible successor, 228-229	classless/classful, 167, 252
convergence, 247-248	convergence, 164
identifying, 245-247	defined, 163
host, 339	DV, 166, 216
interarea, 604 IPv6	distance/vector information learned, 216-217
	EIGRP as, 220-221
EIGRP for IPv6 metrics, 616-617 OSFPv3, 592, 602-604	route poisoning, 219-220
static, configuring, 568-569	split horizon, 219
	update messages, 217-219
troubleshooting, 604-605 ISP	EGP (exterior gateway protocol), 164
default, learning, 303-304	functions, 163
Internet edge, learning, 292-293	
internet eage, tearning, 292-299	

IGP, 164	ruling out switches, 93-94
algorithms, 165-166	RW (read-write) communities (SNMP),
classless/classful, 167	664
metrics, 166-167	
interfaces enabled with, verifying, 262	S
interior comparison, 221	
IPv4, 190	SaaS (Software as a Service), 706
link-state, 166	SBIs (Southbound Interfaces), 729-730
path selections, 163	scoring exams, 759
proprietary, 166	SDN (Software Defined Networking),
RIPv1, 215	724
RIPv2, 215	APIC Enterprise Module (APIC-EM), 735-737
route redistribution, 167	Application Centric Infrastructure (ACI),
troubleshooting, 261-262	734-735
RPs (root ports)	architecture, 732
nonroot switches, 94-96	comparisons, 737
switches, 45-46	controllers
RS (Router Solicitation) messages, 648	centralized control, 729
RSPAN (Remote SPAN), 684	Northbound Interfaces (NBIs), 730-732
RSTP (Rapid Spanning Tree Protocol),	OpenDaylight SDN controller, 733
51-52	Southbound Interfaces (SBIs), 729-730
alternate ports, 53-54	Open SDN, 733
backup port role, 55	Open SDN Controller (OSC), 734
Cisco Catalyst switch RSTP modes,	OpenDaylight (ODL), 733-734
80-82	OpenFlow, 732
implementing, 80	sdm prefer command, 503
link types, 56	sdm prefer lanbase-routing command,
port roles, 53, 83	515
port states, 54, 84-85	Secure Shell (SSH), 727
port types, 56, 84	Secure Sockets Layer (SSL), 375-376
processes, 55	security
standards, 51	AAA servers
STP, compared, 52	configuration, 140-141
RTP (Real-time Transport Protocol),	login authentication rules, 141-142
223	login process, 139
RTP (Reliable Transport Protocol), 223	TACACS+/RADIUS protocols,
RTT (Round Trip Time), 679	139-140
rules	access, 137
AAA login authentication, 141-142	attacks, 142-144
HSRP active/standby, 526	authentication
implicit IPv6 ACL ICMPv6 message	802.1x, 137
filtering, 648-649	AAA servers, 139-142

Internet VPNs, 373	on-demand self-service, 702
SNMPv3, 665, 672-673	Platform as a Service (PaaS), 706-707
DHCP snooping, 142-145	private, 703-704
encryption, 665, 672-673	public, 704
IEEE 802.1x, 137-138	rapid elasticity, 703
Internet VPNs, 373	requirements, 702
IPsec encryption, 374-375	resource pooling, 702
SNMP, 664-665	Software as a Service (SaaS), 706
SNMPv3, 669-671	DHCP, 718
STP, 58	DNS, 716-717
self-ping, 456-457	Internet as WAN, 369
sender's bridge IDs, 43	MetroE, 349
sender's root cost, 43	E-LAN, 350-353
sequence numbers, 446-448	E-Line, 349-353
serial cables, 316	E-Tree, 351-354
serial links. See leased-line WANs	public cloud
servers	accessing, 707-711
AAA	branch offices example, 711-713
authentication, 139-142	intercloud exchanges, 710-711
configuring for 802.1x, 137	public cloud address assignment, 717-718
defining, 141	session keys, 374
enabling, 140	session status (PPPoE), 399-400
username/passwords, verifying, 138	sessions (SPAN), 683-684, 687-688
Cisco hardware, 697	Set messages
defined, 697	RO/RW communities, 664
physical server model, 698	SNMPv2 support, 665-666
virtualization, 698-699	writing variables on agents, 662
hosts, 699	shaping (QoS), 480-483
hypervisors, 699	features, 484
multithreading, 698	rate, 482
networking, 700	slowing messages, 482
virtual data centers, 699-702	time intervals, 483
VMs, 699	shaping data overages (MetroE), 356
VTP, 116	shared edge ports, 84
service-level agreements (SLAs), 676	shared keys, 374
service providers (SPs), 346	shared ports, 56, 84
services	shared session keys, 374
cloud computing	shorter VLAN configuration example,
broad network access, 702	23-24
cloud services catalogs, 703 Infrastructure as a Service (IaaS), 705	Shortest Path First algorithm. See Dijkstra SPF algorithm
measured. 703	show access-list command, 446

show access-lists command, 425, 434, 452, 461, 653	show ip access-list command, 434, 447-449
show arp command, 541	show ip access-lists command, 425, 452,
show commands	461
IPv6 ACLs, 639	show ip bgp command, 308
routing protocol-enabled interfaces, verifying, 262	show ip bgp summary command, 296, 308
STP status, 64	show ip eigrp interfaces command, 259,
show controllers command, 334	284
show controllers serial command, 344	EIGRP
show etherchannel command, 90, 515	enabled interfaces, 238-239, 262
show etherchannel 1 summary	neighbor requirements, verifying, 272
command, 78	multilink interfaces, 333
show etherchannel summary command, 100, 510	show ip eigrp interfaces detail command, 238, 259
show interfaces command, 285, 344, 515, 538	show ip eigrp neighbors command, 259, 284
EIGRP neighbor requirements, verifying,	neighbor status, displaying, 240
272	neighbor verification checks, 272
MLPPP, 334 OSPF	show ip eigrp topology command, 245, 259
interfaces, 270	feasible successor routes, 246
neighbors, 275	metrics, 248
OSPFv3 interface bandwidth, 604	topology table, 243
PPP CHAP status, 328	show ip eigrp topology all-links
PPP PAP, 329	command, 247
PPP status, 327	show ip interface command, 426, 434, 451-452
routed ports, 507	show ip interface brief command, 344
show interfaces description command, 285, 545	GRE tunnels, 382
show interfaces dialer command, 397,	multilink interfaces, 333
410	OSPF interfaces, troubleshooting, 270
show interfaces status command, 507,	show ip interfaces command, 272
510	show ip ospf command, 211, 285
show interfaces switchport command,	duplicate OSPF RIDs, 277
26-28, 31, 36, 106-108, 126	OSPF neighbors, troubleshooting, 275
show interfaces trunk command, 26-28, 32, 36, 108	show ip ospf database command, 169, 189, 212
show interfaces tunnel command, 383, 410	show ip ospf interface command, 211, 285
show interfaces virtual-access command,	DRs/BDRs details, displaying, 198
410	Hello/dead timer mismatches, 279
show interfaces virtual-access configuration command, 398	OSPF areas for ABR interfaces, 198
show interfaces vlan command, 515	OSPF neighbors, troubleshooting, 275

OSPFv2 interface configuration, 207 passive interface, 193

show ip ospf interface brief command, 193, 211, 284

OSPF areas for ABR interfaces, 198 OSPF-enabled interfaces, identifying, 262 OSPF neighbors, troubleshooting, 275 OSPF status on interfaces, 268 OSPFv2 interface configuration, 207

show ip ospf neighbor command, 172, 211, 285

DRs/BDRs details, displaying, 198 neighbors, listing, 274 OSPF processes shutdown, 280

show ip ospf neighbor interface brief command, 280

show ip protocols command, 211, 259, 284

EIGRP-enabled interfaces, 239-240, 262 EIGRP neighbors, verifying, 241, 272 IPv4 routing protocols, 190 OSPF configuration errors, 269-270 OSPFv2 interface configuration, 206

show ip route command, 212, 259, 308, 546-548

administrative distance, 168 dialer interface Layer 3 orientation, 400 EIGRP-learned routes, displaying, 242 IPv4 routes added by OSPF, 190 routing tables, displaying, 515 show ip route eigrp command, 242, 259,

284

show ip route ospf command, 212, 285,

show ip route static command, 201 show ip sla enhanced-history

distribution-statistics command, 694 show ip sla history command, 680, 694 show ip sla statistics command, 694 show ip sla summary command, 694 show ipv6 access-list commands, 653 show ipv6 access-lists command, 643 show ipv6 eigrp interfaces command, 620, 630

show ipv6 eigrp interfaces detail command, 630

show ipv6 eigrp neighbors command, 630

show ipv6 eigrp topology command, 631 show ipv6 eigrp topology | section command, 631

show ipv6 interface command, 583, 653 show ipv6 neighbors command, 583

IPv6 ACL ICMPv6 NDP message filtering, 646

IPv6 IPv4 replacement, 572

show ipv6 ospf command, 604, 610 show ipv6 ospf database command, 600, 610

show ipv6 ospf interface command, 595-596, 610

show ipv6 ospf interface brief command, 595, 604, 610

show ipv6 ospf neighbor command, 599, 610

show ipv6 protocols command, 583, 610 EIGRP for IPv6, 620, 630 OSPFv3 interfaces, 595

show ipv6 route command, 583, 610 EIGRP for IPv6, 631

IPv6 router connectivity, 572

show ipv6 route eigrp command, 631 show ipv6 route ospf command, 603, 610

show ipv6 route | section command,

show ipv6 routers command, 583, 646 show mac address-table command, 106 show mac address-table dynamic command, 103

show monitor detail command, 687, 694 show monitor session command, 687, 694

show monitor session all command, 686 show ppp all command, 328-329, 344 show ppp multilink command, 334, 344 show pppoe session command, 399, 410 show running-config command, 126, 424, 446-448

show snmp command, 668, 694	signatures, 472
show snmp community command, 667,	the Sim (Pearson Network Simulator),
694	758
show snmp contact command, 694	Simple Network Management Protocol.
show snmp group command, 673, 694	See SNMP
show snmp host command, 667, 694	single-area OSPF, 177
show snmp location command, 694	single-area OSPFv2 configuration,
show snmp user command, 673, 694	186-187
show spanning-tree command, 90	IPv4 addresses, 186
show spanning-tree bridge command, 74	matching with network command, 187-188
show spanning-tree interface command,	multiarea configurations, 195-196
90	network command, 187
show spanning-tree interface detail	organization, 185
command, 75	passive interfaces, 192-193
show spanning-tree root command, 70,	RIDs, 191-192
show spanning-tree summary command,	verifying, 188-190
76, 90	wildcard masks, 187-188
show spanning-tree vlan command, 90	single-area OSPFv3 configuration,
show spanning-tree vlan 10 command,	589-590
68, 70	single homed Internet edge design, 290
show spanning-tree vlan 10 bridge	single points of failure, 517
command, 70	site-to-site VPNs, 373-375
show spanning-tree vlan 10 interface gigabitethernet0/2 state command, 84	SLA (service level agreement), 676
show standby command, 525, 529, 535	SLAAC (stateless address
show standby brief command, 524, 535	autoconfiguration)
show tcp brief command, 296	EUI-64, 567
show tcp summary command, 308	IPv6 settings, 566-567
show vlan command, 36, 106, 134	NDP, 566
show vlan brief command, 21-24, 106	troubleshooting, 577-578
show vlan id command, 22, 106	SLBaaS (SLB as a service), 714
show vlan status command, 126	SNMP (Simple Network Management Protocol), 660
show vlans command, 499, 515	
show vtp password command, 126, 134	agents, 661 clear-text passwords, 664
show vtp status command, 24, 36, 123,	communities, 664
126, 134	Get messages
shutdown command, 36, 343	agent information, 662
EIGRP for IPv6, 616, 630	RO/RW communities, 664
Layer 1 leased-line WAN problems, 336	SNMPv2 configuration, 665-666
OSPF processes, 280	history, 661
ROAS subinterfaces, 499	Inform messages, 662-663, 666-667
shutdown vlan command, 126, 134	managers, 661
shutting down OSPF processes, 280-281	managers, oor

MIB, 662-663	Software as a Service (SaaS), 706
notifications, 662-663	Software Defined Networking. See SDN
read-only (RO) communities, 664	solution apps, 738
read-write (RW) communities, 664	sources
security, 664-665	addresses, 384
Set messages	IP SLAs, 677
RO/RW communities, 664	IPs, matching, 437-438
SNMPv2 configuration, 665-666	SPAN, 683, 687-688
writing variables on agents, 662	Southbound Interfaces (SBIs), 729-730
Trap messages, 662-663, 666-667	SPs (service providers), 346
snmp-server command, 666	SPAN (Switched Port Analyzer), 681
snmp-server community command, 693	dependencies, 684-685
snmp-server contact command, 693	destination ports, 683
snmp-server enable traps command, 693	local, 684-687
snmp-server group command, 669-670	network analyzer needs for, 682-683
snmp-server host command, 666, 674,	Remote (RSPAN), 684
693	sessions, 683-684
snmp-server location command, 693	source ports, 683
snmp-server user command, 671-672	sources, limiting, 687-688
SNMPv2	traffic direction, 687
configuring	VLANs, monitoring, 684
Get/Set messages, 665-666	spanning-tree algorithm (STA), 42
Trap/Inform messages, 666-667	spanning-tree bpduguard disable
verifying, 667-669	command, 89
security, 664	spanning-tree bpduguard enable
SNMPv2c (Community-based SNMP	command, 74, 89
Version 2), 664	spanning-tree bpguard enable
SNMPv3	command, 68
configuring, 669	spanning-tree commands, 89
authentication, 672-673	spanning-tree mode command, 80, 89
encryption, 672-673	spanning-tree mode mst command, 66
groups, 669-671	spanning-tree mode pvst command, 66
notifications, 674-675	spanning-tree mode rapid-pvst
requirements, 669	command, 66, 82
summary, 675-676	spanning-tree pathcost method long command, 48
users, 672	spanning-tree portfast command, 68, 74
verifying, 673	89
groups, 670-671	spanning-tree portfast bpduguard
Inform messages, 674-675	default command, 89
MIB views, 670	spanning-tree portfast default command
security, 664-665	75, 89
Trap messages, 674-675	spanning-tree portfast disable command 75, 89

Spanning Tree Protocol. See STP	verification, 427-428
spanning-tree vlan command, 67	wildcard masks, 421-423
spanning-tree vlan 10 port priority 112	standard range VLANs, 116
command, 96	standby 1 preempt command, 527
speed command, 545	standby command, 523, 535
speeds	standby HSRP routers, 526
LAN/WAN interfaces, 465	standby version command, 528
leased-line WANs, 317-318	standby version 1 2 command, 535
SPF (Shortest Path First) algorithm, 170	stateful DHCP troubleshooting,
Dijkstra SPF, 170	576-577
OSPF best routes, calculating, 176-177	stateful DHCPv6, 565-566
spinning up VMs, 705	stateless address autoconfiguration. See
split horizon (DV routing protocols),	SLAAC
219	states
spoofing, 398	change reactions (STP topology), 49
SSH (Secure Shell), 727	discarding, 53
SSL (Secure Sockets Layer), 375-376	interfaces
STA (spanning-tree algorithm), 42	changing with STP, 51
stack masters, 148	criteria, 42-43
stacking cables, 147	forwarding/blocking, 41
stacking modules, 147	learning, 51
stacking ports, 147	listening, 51
stacking switches	neighbors, 172, 275
access layer switches, 147-148	BGP, 297
benefits, 146	OSPF, 175
chassis aggregation, 149-151	OSPFv3, 597
FlexStack/FlexStack-Plus, 149	relationships, 594
operating as single logical switch, 148	ports, 54, 84-85
stack masters, 148	ROAS subinterfaces, 498
standard ACLs, configuring, 637-640	STP, 50
standard numbered IPv4 ACLs, 419	tunnel interfaces, 384-385
access-list command, 428-429	VLAN mismatched trunking operational,
command syntax, 421	107-108
configuration examples, 424-427	static discard routes, 301-303
list logic, 419-421	static routes (IPv6), configuring, 568-569
matching any/all addresses, 423-424	status
matching exact IP address, 421	BPDU Guard global settings, 76
matching subset of address, 421-423	EIGRP neighbors, 221, 240-241
overview, 419	HSRP, 525
reverse engineering from ACL to address	interface codes, 335
range, 429-430	PortFast global settings, 76
troubleshooting, 427-428	PPP. 327

PPP CHAP, 328	root election influence, 72-74
PPP PAP, 329	root switches, electing, 44-45, 93-94
PPPoE, 399-401	RSTP. See RSTP
STP, 68-70	security, 58
steady-state operation (STP), 49	STA (spanning-tree algorithm), 42
STP (Spanning Tree Protocol), 38	states, 50
802.1D standard, 51	steady-state operation, 49
behind the scenes summary, 66	switch reactions to changes, 49-50
BIDs (bridge IDs), 43	switch RPs, choosing, 45-46
root switch election, 44-45	tiebreakers, 95-96
system ID extensions, 67	timers, 49-50
BPDUs (bridge protocol data units), 43	topology influences, 48-49
BPDU Guard, 74-76	troubleshooting
Cisco Catalyst switch STP modes, 80-81	convergence, 98
configuration, 65	DPs on LAN segments, 96-98
modes, 65-66	root switch election, 93-95
options, 68	RPs on nonroot switches, 94-96
per-VLAN port costs, 68	verification, 68-70
PVST+, 66-67	studying after failing the exam, 759-760
system ID extensions, 67	studying for exam, 760
convergence, 42, 98	subinterfaces, 496-498
EtherChannels, 57	subnet masks
configuring, 76-79	mismatched masks, 538-539
MAC tables impact, predicting, 103-104	VLSM, 549-552
troubleshooting, 98-101	subnets
forwarding or blocking criteria, 42-43	advertising to ISPs, 300-301
interface states, changing, 51	IGPs, 288
LAN redundancy, 38-41	IPv6, 563-564
LAN segment DPs, choosing, 47	mismatched
looping frames, preventing, 39	EIGRP neighbors, 273
MAC tables impact, predicting, 102	leased-line WANs, 339
PortFast, 57-58	OSPFv2 multiarea configuration, 194
configuring, 74	overlapping subnets, 549-552
enabling/disabling, 75	subset of IP address, matching, 421-423
global settings, displaying, 76	successors
verifying, 75	EIGRP, 228-229, 244-245
ports	EIGRP for IPv6, 613
blocking, choosing, 39	feasible
costs, 46, 71-72	convergence, 247-248
states, 54	identifying, 245-247
purpose, 41-43	super backbone (OSPF), 361
roles, 50	superior Hello, 44

supplicants, 137	links, 56
SVIs (switched virtual interfaces), 494,	logical, 148
501	nonroot, 94-96
configuring, 501-502	PortFast, 57-58
troubleshooting, 503-505	ports
verifying, 502-503	alternate role, 53-54
Switched Port Analyzer. See SPAN	RSTP types, 56
switches	QoS, 469
as 802.1x authenticators, 137	root
access layer, 147-148	costs, 42
adding, 128-130	electing, 44-45, 72-74
alternate ports, 53	ruling out switches, 93-94
backup ports, 53	STP verification, 70
BIDs (bridge IDs), 43	troubleshooting, 93-95
STP verification, 70	RPs (root ports), choosing, 45-46
system ID extensions, 67	SPAN, 681
BPDUs (bridge protocol data units), 43	dependencies, 684-685
chassis aggregation, 149	destination ports, 683
benefits, 151	Encapsulated RSPAN (ERSPAN), 684
design, improving, 150	limiting sources, 687-688
distribution/core switches high	local, 684-687
availability, 149-150	network analyzer needs, 682-683
switch stacking, 149-151	Remote (RSPAN), 684
Cisco Catalyst, 80-82	sessions, 683-684
core, 149-150	source ports, 683
data plane forwarding, analyzing, 102-104	traffic direction, 687
distribution, 149-150	VLANs, monitoring, 684
EtherChannel, 57	stacking
interfaces, 68	access layer switches, 147-148
internal processing, 727-728	benefits, 146
LAN segment DPs, choosing, 47	chassis aggregation, 149-151
Layer 2 switches, 17	FlexStack/FlexStack-Plus, 149
Layer 3 EtherChannels	operating as single logical switch, 148
configuring, 508-509	stack masters, 148
troubleshooting, 511	STP
verifying, 510	changes, reacting, 49-50
Layer 3 with routed ports, 505-508	topology influences, 48-49
Layer 3 switches, 17-19	synchronization to VLAN database,
Layer 3 with SVIs	verifying, 123-125
configuring, 501-502	ToR (Top of Rack), 700
troubleshooting, 503-505	traditional access switching, 146
verifying, 502-503	virtual (vSwitches), 699

VLANs, enabling/disabling, 106	transporting messages between BGP peers, 294
voice switches, 29	windowing, 484-485
as VTP servers, 116	tcp keyword, 438
switchport access vlan command, 20, 23, 31, 36, 105, 126	TCP/IP networks, 661
switchport command, 506, 515	TDM (time-division multiplexing), 318
switchport mode command, 25, 36	telcos (telephone companies), 315, 370
switchport mode access command, 20,	Telnet, 727
23, 31, 130	ternary content-addressable memory
switchport mode dynamic auto	(TCAM), 728
command, 107	testing IPv6
switchport mode dynamic desirable	ACLs, 643
command, 27	connectivity, 569-572
switchport mode trunk command, 24,	three-area OSPF, 178
108, 496	TID fields (QoS marking), 474
switchport nonegotiate command, 28, 36, 108, 130	tiebreakers (STP), 95-96
switchport trunk allowed vlan command,	time (exam), 749-750
36, 109	time burners, 749
switchport trunk encapsulation	time-division multiplexing (TDM), 318
command, 25, 36	time intervals (QoS shaping), 483
switchport trunk native vlan command,	timers
36, 110	EIGRP for IPv6, 618
switchport voice vlan command, 30-31, 36, 126	EIGRP neighbors, 221
synchronizing	Hello messages, 174
switches, 123-125	Hello/dead mismatches, troubleshooting,
VTP, 117-118, 127-128	279-280
system ID extensions (BIDs), 67	STP, 49-50
	tools
T	APIC-EM Path Trace ACL Analysis tool, 738-739
T1. See leased-line WANs	APIC-EM Path Trace app, 738
T3, 318	QoS
TACACS+, 139-140	ACLs, compared, 469
tagging (VLAN), 15	classification, 469-472
tail drops, 484	congestion avoidance, 484-485
T-carrier systems, 317	congestion management, 477-479
TCAM (ternary content-addressable	marking, 472-476
memory), 728	policing, 480-482
TCP (Transmission Control Protocol)	queuing strategy, 479
BGP connections, displaying, 296	shaping, 480-484
packets, 641	Top of Rack (ToR) switches, 700

port numbers, matching, 438-441

topologies	types
EIGRP	data, 466-467
displaying, 243-244	video, 468
feasible successor routes, 245-248	voice, 359, 467-468
metrics, 248	Traffic Class field (IPv6), 473
successor routes, identifying, 244-245 EIGRP for IPv6, 623-624	Transmission Control Protocol. See TCP
MetroE, 349-351	transparent mode (VTP), 126
OSPF area design, 177	Trap messages, 662-663
STP, influences, 48-49	SNMPv2, 666-667
ToR (Top of Rack) switches, 700	SNMPv3, 674-675
ToS (Type of Service) field (IPv4), 472	troubleshooting
traceroute command, 543	CHAP authentication failures, 337-338
GRE tunnels, 384	DPs on LAN segments, 97
IPv6	EIGRP interfaces, 263
connectivity, testing, 570-571	configuration problems, 266-268
network router problems,	working details, 264-266
troubleshooting, 579	EIGRP for IPv6
routes, testing, 583	interfaces, 621
traceroute6 command, 583	neighbors, 622-623
tracert command, 583	routes, 625-626
traditional access switching, 146	EIGRP neighbors, 273-274
traffic	EtherChannels, 98
bandwidth, managing, 465	channel-group command incorrect
characteristics, 465	options, 98-100
congestion	configuration checks before adding interfaces, 100-101
avoidance, 484-485	GRE tunnels, 384
management, 477-479	ACLs, 387-388
delay, 465	interface state, 384-385
end-user, 677	Layer 3 issues, 386
IPv6 ACLs, 636	source/destination addresses, 384
jitter, 465	tunnel destination, 385-386
loss, 466	HSRP, 528
policing, 480	,
discarding excess traffic, 481	ACL blocks HSRP packets, 531 configuration, 529-530
edge between networks, 481-482	group number mismatches, 531
features, 482	misconfiguration symptoms, 530
traffic rate versus configured policing rate, 480-481	routers configuring different VIPs, 53
public cloud branch office email services, 712-713	version mismatches, 530-531 with IP SLA, 679-681
shaping, 480-483	
SPAN sessions, 687	

IPv4 ACLs, 450	OSPF
ACL behavior in network, 450-451	interfaces, 268-270
ACL interactions with router-generated packets, 455-457	MTU mismatched settings, 281 neighbors, 274-280
common syntax mistakes, 453-454	processes, shutting down, 280-281
inbound ACL filters routing protocol packets, 454-455	OSPFv3 interfaces, 596-597
reversed source/destination IP address, 452-453	neighbors, 598-600
troubleshooting commands, 451-452	PAP authentication failures, 337-338
IPv4 routing	PPPoE, 401
default router IP address setting, 541	customer router configuration, 401 dialer 2 status, 402
DHCP issues, 542-543	Layer 1, 402-403
DNS problems, 540-541	Layer 2, 403-404
incorrect addressing plans, 549-552	Layer 3, 404
IP forwarding issues, 545-548	summary, 405
LAN issues, 543-545	ROAS, 500
mismatched IPv4 settings, 537-538	routing protocols, 261-262
mismatched masks, 538-539	routing with SVIs, 503-505
packet filtering with access lists, 553	RP problems, 96
router WAN interface status, 552	SPAN sessions, 687-688
IPv6 networks, 572	standard numbered ACLs, 427-428
ACLs, 580	STP
filtering issues, 573	convergence, 98
host issues, 573	DPs on LAN segments, 96-98
host pings fail from default router, 574-575	root switch election, 93-95
host pings only working in some cases,	RPs on nonroot switches, 94-96
573-574	switch data plane forwarding
missing IPv6 settings in host, 576-578 name resolution problems, 575-576	EtherChannel impact on MAC tables, 103-104
router issues, 573	STP impact on MAC tables, 102
routing, 579-580	VLAN of incoming frames, 104-105
IPv6 routes, 604-605	VLANs
Layer 3 EtherChannels, 511	access interfaces, 105-106
leased-line WANs, 335	frame switching problems, 105
Layer 1 problems, 335	undefined/disabled VLANs, 106
Layer 2 problems, 336-338	VLAN trunking
	frame switching problems, 105
Layer 3 problems, 338-339	mismatched native VLANs, 110
mismatched subnets, 339	mismatched operational states, 107-108
neighbors, 271	mismatched supported VLAN lists, 108-109

VTP, 127	replacing serial links, 377
adding switches, 128-130	state, 384-385
common configuration rejections, 128	VPN, 373-374
synchronization, 127-128	tutorial (exam), 748-749
trunking (VLANs)	Twitter (Wendell Odom), 761
802.1Q, 16	Type of Service (ToS) field (IPv4), 472
configuration, 24-28	
disabling, 130	U
ISL (Inter-Switch Link), 16	
overview, 14	UCS (Unified Computing System), 697
protocol. See VTP	UDP (User Datagram Protocol)
VLAN tagging, 15	Jitter probes, 677
trust boundaries (QoS marking), 474	packets, 641
trusted ports, 143	port numbers, matching, 438-441
configuring, 144	undebug all command, 285
DHCP snooping, 145	undefined VLANs, troubleshooting, 106
tunnel destination command, 384-386,	unequal-cost load balancing, 250
409	UNI (user network interface), 348
tunnel mode gre ip command, 382, 410	unicast IPv6 addresses, 563-565
tunnel mode gre multipoint command,	Unified Computing System (UCS), 697
382	unique local unicast addresses, 563
tunnel source command, 384, 409 tunnels	unsecured networks (GRE tunnels), 378-380
destinations, 385-386	unsolicited log messages, 270
GRE, 376	untrusted ports, 143-145
between routers, 377-378	upd keyword, 438
configuring, 380-382	updates
details, displaying, 382	BGP, 287, 294
functionality, testing, 384	DV protocols, 217-219
large scale environments, 388	EIGRP, 223-224
multipoint with DMVPN, 389	full, 218
point-to-point, 378	partial, 220
routes, 383	periodic, 218
troubleshooting, 384-388	User Datagram Protocol. See UDP
tunnel interfaces, 377	user network interface (UNI), 348
unsecured networks, 378-380	username command, 327, 343
verifying, 382-384 interfaces	U.S. National Institute of Standards and Technology (NIST), 702
ACLs, 387-388	
creating, 379	V
destinations, 385-386	
Layer 3 issues, 386	v1default MIB view, 670
Int yet > 100 11003 > 00	

variables (MIB), 662-663

variance (EIGRP), 250-251	session status, 399-400
variance command, 258	virtual-access interfaces, 398
EIGRP, 235, 250, 614	ROAS, 498-499
EIGRP for IPv6, 618, 630	routing protocol-enabled interfaces, 262
vCPU (virtual CPU), 698	routing with SVIs, 502-503
vector (DV protocols), 216-217	SNMPv2 configuration, 667-669
verification command, 68	SNMPv3 configuration, 673
verifying	standard numbered ACLs, 427-428
BPDU Guard, 75	STP, 68-70
data and voice VLANs, 30-32	switches synchronization to VLAN
eBGP neighbors, 296-297	database, 123-125
EIGRP configuration, 237	username/passwords on AAA servers, 138
EIGRP enabled interfaces, finding,	versions
238-240	HSRP, 528
IPv4 routing table, displaying, 241-242	OSPF, 585
neighbors, 222, 240-241, 272-273	VTP, 119
EIGRP for IPv6	video traffic
interfaces, 620	QoS requirements, 468
routes, 624-625	shaping time intervals, 483
EtherChannel configuration before	views (MIB), 670
adding interfaces, 100-101	virtual-access interfaces, 398
GRE tunnels, 382-384	virtual LANs. See VLANs
HDLC, 322	virtual machines. See VMs
HSRP, 525	virtual network functions (VNFs),
interarea OSPF routes, 199-200	714-716
IPv6 connectivity, 569	Virtual Private LAN Service (VPLS),
hosts, 569-570	349
routers, 571-572	Virtual Private Networks. See VPNs
Layer 3 EtherChannels, 510	Virtual Private Wire Service (VPWS), 349
MLPPP, 333-335	
OSPFv2 configuration	Virtual Router Redundancy Protocol (VRRP), 516
interface, 206-207	virtualization
multiarea, 197-200	ASA firewall (ASAv), 715
single-area, 188-190	CPU (vCPU), 698
OSPFv3	data centers
interfaces, 595-596, 602-604	networking, 699
neighbors, 597-598	physical networks, 700
PortFast, 75	vendors, 699
PPP, 328-329	workflow, 701-702
PPPoE, 396-397	firewalls, 715
dialers, 397-398	networking, 699-700, 716
Layer 3 status, 400-401	NICs (vNICS), 699
	` //

routers, 715	troubleshooting, 105-106
servers, 698-700	trunking
switches (vSwitches), 699	802.1Q, 16
VMs. See VMs	configuration, 24-28
VLANs (virtual LANs)	disabling, 130
configuration	ISL (Inter-Switch Link), 16
data and voice VLANs, 30-32	overview, 14
database, VTP synchronization,	troubleshooting, 105-110
117-118	VLAN tagging, 15
full VLAN configuration example,	VTP, 24
20-23	vlan 10 command, 115
overview, 20	vlan 200 command, 128
shorter VLAN configuration example,	vlan command, 20, 31, 36, 126
23-24	VLAN Trunking Protocol (VTP), 24,
trunking, 24-28	114
database switches synchronization,	VLSM (variable length subnet masking)
verifying, 123-125	overlapping subnets, 550-552
default VLANs, 20	recognizing when VLSM is used, 549
enabling/disabling, 106	VMs (virtual machines), 698-699
IDs, 14	ACI, 735
incoming frames, choosing, 104-105	IaaS, 705
interfaces. See SVIs	networking, 700
IP telephony, 28	PaaS, 706-707
data and voice VLAN concepts, 29-30	SaaS, 706
data and voice VLAN configuration and	spinning up, 705
verification, 30-32	virtual NICs (vNICs), 699
summary, 32	VNFs (virtual network functions),
LAN support, adding, 115	714-716
mismatched native on trunks, 110	vNICs (virtual NICs), 699
mismatched supported trunk lists,	voice switches, 29
108-109	voice traffic
native, 16, 497-498	QoS requirements, 467-468
overview, 13-14	shaping time intervals, 483
routing, 16-17	VoIP, 359
Layer 3 EtherChannels, 508-511	VoIP (Voice over IP), 359, 467-468
Layer 3 switching with SVIs, 19, 501-505	VPLS (Virtual Private LAN Service),
Layer 3 switch routed ports, 505-508	349
ROAS, 496-500	VPNs (Virtual Private Networks)
	client, 375-376
with routers, 17-18	dynamic multipoint (DMVPN), 389
SPAN monitoring, 684	Internet, 369
standard range, 116	benefits, 374
tagging, 15	security, 373
	000001003, 010

MPLS VPNs (MPLS Virtual Private Networks), 357 EIGRP challenges, 362-363 Layer 3, 360-363 OSPF area design, 361-362 public cloud, accessing, 709 site-to-site, 373-375 tunnels, 373-374	vtp mode off command, 24, 126 vtp mode transparent command, 24, 126 vtp password command, 126, 133 vtp pruning command, 126, 134 vtp version command, 133
VPWS (Virtual Private Wire Service), 349	WANs Ethornot 700
VRRP (Virtual Router Redundancy Protocol), 516	Ethernet, 709 Frame Relay, 346 interface cards (WICs), 317
vSwitches (virtual switches), 699	interface speeds, 465
VTP (VLAN Trunking Protocol), 24,	Internet access, 369
114	Internet as WAN service, 369
automated update powers, 114	leased-line, 315
configuration	building, 319
common rejections, troubleshooting, 128	CSU/DSUs, 318
default VTP settings, 121	mismatched subnets, 339
example, 122	physical components, 316-317
new VTP configuration settings, 122	speeds, 317-318
planning, 121	troubleshooting, 335-339
steps, 121	leased-line with HDLC, 319
storing, 125-126	configuring HDLC, 321-323
domains, 117-119	de-encapsulating/re-encapsulating IP
features, 120	packets, 320
pruning, 119-120	framing, 320
requirements, 118-119	leased-line with PPP
servers, 116	authentication, 325-326
standard range VLANs, 116	configuring PPP, 326-327
switches synchronization to VLAN database, verifying, 123-125	configuring PPP CHAP, 327-328
synchronization, 117	configuring PPP PAP, 328-330
transparent mode, 126	control protocols, 324
troubleshooting, 127	framing, 324
adding switches, 128-130	multilink. See MLPPP
common configuration rejections, 128	PPP functions, 323
synchronization, 127-128	MetroE, 347
versions, 119	access links, 348
VLAN support, adding, 115	data usage, 354-356
vtp commands, 125	E-LAN service, 350-353
vtp domain command, 126, 133	E-Line service, 349-353
vtp mode command, 36, 126, 133	E-Tree service, 351-354

full mesh topology, 350	Eclipse IDE, 707
hub and spoke topology, 351	ETSI, 716
IEEE Ethernet standards, 348	Google App Engine PaaS, 707
Layer 3 design, 352-354	IANA, 165
MEF, 349	ICMPv6 parameters, 635
partial mesh topology, 351 physical design, 347-348	IPv6 multicast address space registry, 647
Point-to-Point topology, 349-350	ICMPv6 packets, 635
services, 349 MPLS, 356-357	Jenkins continuous integration and automation tool, 707
access links, 358	MEF, 349
Layer 3 design, 358	OpenDaylight SDN controller, 733 OpenFlow, 730
MPLS VPNs, 360-363 QoS, 359-360	Pearson Network Simulator (the Sim), 758
VPNs, 357	Wendell Odom's SDN Skills, 737
private	Wireshark network analyzer, 681
public cloud access, 709-711	weighting, 477
public cloud branch office connections, 713	Wendell Odom's SDN Skills blog, 737
types, 346	WICs (WAN interface cards), 317
public cloud connections	wildcard_mask parameter (network command), 187
Internet as, 707-709	wildcard masks
private WANs, 709-711	binary wildcard masks, 423
service providers (SPs), 346	decimal wildcard masks, 421-423
wireless, 371-372	EIGRP configuration, 236-237
WC masks. See wildcard masks	finding right wildcard mask, 423
vebsites	OSPF single-area configuration, 187-188
ARIN, 165	wireless Internet, 372
BGP routing table analysis reports, 287	wireless WANs, 371-372
CCNA (ICND2) Config Labs, 758	Wireshark network analyzer, 681
Cisco	workflow (virtualized data center),
ACI, 735	701-702
DevNet, 737	working interfaces, 43
Feature Navigator, 503	write views (SNMPv3 groups), 671
Prime management products, 661	